Complete problem 1 and four of problems 2-6. CLEARLY mark the problems you do not want graded. You must show your work to receive credit for problems requiring math. Report your answers with the appropriate number of significant figures.

You MUST complete problem 1. (16 pts.)

When ammonium sulfate dissolves, both the anion and the cation can participate in acid-base equilibria. Considering all the equilibria reflected by the equilibrium constants below, write enough equations so that you could solve for the concentration of each species in <u>a solution that is saturated</u> with ammonium sulfate and also contains 0.20 M potassium nitrate. You must write the charge balance expression and <u>at least</u> one mass balance. Identify all unknowns and write enough explicit, independent equations so that only algebra remains to solve for the unknowns. <u>A numerical answer is not necessary</u>. Ignore activities.

$(NH_4)_2SO_4(s)$	$K_{sp} = 276$
$\mathrm{NH_4^+}$	$K_a = 5.7 \times 10^{-10}$
SO_4^{2-}	$K_b = 9.8 \times 10^{-13}$
H_2O	$K_w = 1.0 \times 10^{-14}$

Do four of problems 2-6. Clearly mark the problems you do not want graded. (16 pts. ea.)

 Consider the table of activity coefficients below. As you move from left to right across any row on the table, the values for activity coefficient decrease. As you move down in a given column, the activity coefficient also decreases. Clearly describe the phenomena that cause these trends. Do not simply point out the trends; <u>you must explain why the trends are observed</u>. No calculations are necessary.

	Ionic Strength					
Species	0.001 M	0.01 M	0.1 M			
hydronium ion	0.967	0.914	0.830			
nitrate ion	0.964	0.899	0.755			
calcium ion	0.870	0.675	0.405			
sulfate ion	0.867	0.660	0.355			
phosphate ion	0.725	0.395	0.095			

3. Aziridine (C₂NH₅) is a monobasic weak base with a pK_b of 5.96. Calculate the pH of a solution prepared by mixing 20.0 mL of 0.025 M HCl with 50.0 mL of 0.036 M aziridine and diluting the resulting solution to 100.0 mL. *Do not consider autoprotolysis or activities*.

4. <u>Using activities</u>, find the mercury concentration of a solution of 0.025 M K₂SO₄ that is saturated with Hg(SCN)₂ (K_{sp} for Hg(SCN)₂ is 2.8 x 10⁻²⁰). Assume that all other salts are soluble. You may ignore the autoprotolysis of water and any acid-base character of sulfate and thiocyanate. Compare this result to that obtained if you were to ignore activities.

- 5. Complete both parts a and b. (8 points each)
 - a. A saturated solution of Ag_2CO_3 ($K_{sp} = 8.1 \times 10^{-12}$) that originally had a volume of 1.00 L is allowed to evaporate until the solution volume is 0.500 L. How does the new concentration of Ag^+ compare to the concentration in the original solution? Clearly justify your response. *Do not consider activities*.

b. In determining the pH of a solution that contains and 0.10 M formic acid ($K_a = 1.8 \times 10^{-4}$) and 0.10 M HF ($K_a = 6.8 \times 10^{-4}$), why is the ICE table approach not a valid strategy to employ? What approach should be used instead? *Do not consider activities*.

6. Is it possible to perform a 99.99 % complete separation of barium and silver by precipitation with carbonate if both Ba²⁺ and Ag⁺ are present initially at 0.010 M? Justify your decision. *Do not consider activities*.

BaCO ₃	$K_{sp} = 5.0 \times 10^{-9}$
Ag_2CO_3	$K_{sp} = 8.1 \text{ x } 10^{-12}$

Possibly Useful Information

$K_a K_b = K_W = 1.0 \text{ x } 10^{-14}$	$pH = -log [H^+]$
y = mx + b	pH + pOH = 14
$\log \gamma = \frac{-0.51z^2 \sqrt{\mu}}{1 + \left(\alpha \sqrt{\mu} / 305\right)} \text{ (with } \alpha \text{ in pm)}$	$\mu = \frac{1}{2} \sum_{i} c_i z_i^2$
$\Delta G = \Delta H - T\Delta S = -RTlnK$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Activity coefficients for aqueous solutions at 25°C

	Ion size	Ionic strength (µ, M)				
Ion	(α, pm)		0.005	0.01	0.05	0.1
$C_{HARGE} = \pm 1$						
H ⁺	900	0.967	0.933	0.914	0.86	0.83
$(C_6H_5)_2CHCO_2^-, (C_3H_7)_4N^+$	800	0.966	0.931	0.912	0.85	0.82
$(O_2N)_3C_6H_2O^-, (C_3H_7)_3NH^+, CH_3OC_6H_4CO_2^-$	700	0.965	0.930	0.909	0.845	0.81
$\mathrm{Li}^{+}, \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-}, \mathrm{HOC}_{6}\mathrm{H}_{4}\mathrm{CO}_{2}^{-}, \mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CO}_{2}^{-}, \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CH}_{2}\mathrm{CO}_{2}^{-}, \mathrm{ClC}_{6}\mathrm{H}_{5}\mathrm{CH}_{2}\mathrm{CO}_{2}^{-}, \mathrm{ClC}_{6}\mathrm{H}_{6}\mathrm{CO}_{2}^{-}, \mathrm{ClC}$						
$CH_2 = CHCH_2CO_2^-, (CH_3)_2CHCH_2CO_2^-, (CH_3CH_2)_4N^+, (C_3H_7)_2NH_2^+$	600	0.965	0.929	0.907	0.835	0.80
$Cl_2CHCO_2^-$, $Cl_3CCO_2^-$, $(CH_3CH_2)_3NH^+$, $(C_3H_7)NH_3^+$	500	0.964	0.928	0.904	0.83	0.79
Na^+ , $CdCl^+$, ClO_2^- , IO_3^- , HCO_3^- , $H_2PO_4^-$, HSO_3^- , $H_2AsO_4^-$,						
$\operatorname{Co}(\operatorname{NH}_3)_4(\operatorname{NO}_2)_2^+$, $\operatorname{CH}_3\operatorname{CO}_2^-$, $\operatorname{ClCH}_2\operatorname{CO}_2^-$, $(\operatorname{CH}_3)_4\operatorname{N}^+$,						
$(CH_3CH_2)_2NH_2^+, H_2NCH_2CO_2^-$	450	0.964	0.928	0.902	0.82	0.775
$^{+}\text{H}_{3}\text{NCH}_{2}\text{CO}_{2}\text{H}, (\text{CH}_{3})_{3}\text{NH}^{+}, \text{CH}_{3}\text{CH}_{2}\text{NH}_{3}^{+}$	400	0.964	0.927	0.901	0.815	0.77
OH^- , F^- , SCN^- , OCN^- , HS^- , CIO_3^- , CIO_4^- , BrO_3^- , IO_4^- , MnO_4^- ,						
HCO_2^- , H_2 citrate ⁻ , $CH_3NH_3^+$, $(CH_3)_2NH_2^+$	350	0.964	0.926	0.900	0.81	0.76
$K^+, Cl^-, Br^-, I^-, CN^-, NO_2^-, NO_3^-$	300	0.964	0.925	0.899	0.805	0.755
$Rb^+, Cs^+, NH_4^+, Tl^+, Ag^+$	250	0.964	0.924	0.898	0.80	0.75
$C_{HARGE} = \pm 2$						
Mg ²⁺ , Be ²⁺	800	0.872	0.755	0.69	0.52	0.45
$CH_2(CH_2CH_2CO_2^-)_2, (CH_2CH_2CH_2CO_2^-)_2$	700	0.872	0.755	0.685	0.50	0.425
$Ca^{2+}, Cu^{2+}, Zn^{2+}, Sn^{2+}, Mn^{2+}, Fe^{2+}, Ni^{2+}, Co^{2+}, C_6H_4(CO_2^-)_2,$						
$H_2C(CH_2CO_2^-)_2, (CH_2CH_2CO_2^-)_2$	600	0.870	0.749	0.675	0.485	0.405
$Sr^{2+}, Ba^{2+}, Cd^{2+}, Hg^{2+}, S^{2-}, S_2O_4^{2-}, WO_4^{2-}, H_2C(CO_2^{-})_2, (CH_2CO_2^{-})_2,$						
$(CHOHCO_2^-)_2$	500	0.868	0.744	0.67	0.465	0.38
$Pb^{2+}, CO_3^{2-}, SO_3^{2-}, MoO_4^{2-}, Co(NH_3)_5Cl^{2+}, Fe(CN)_5NO^{2-}, C_2O_4^{2-}, C_$						
Hcitrate ^{2–}	450	0.867	0.742	0.665	0.455	0.37
$Hg_2^{2+}, SO_4^{2-}, S_2O_3^{2-}, S_2O_6^{2-}, S_2O_8^{2-}, SeO_4^{2-}, CrO_4^{2-}, HPO_4^{2-}$	400	0.867	0.740	0.660	0.445	0.355
$CHARGE = \pm 3$						
Al^{3+} , Fe^{3+} , Cr^{3+} , Sc^{3+} , Y^{3+} , In^{3+} , lanthanides ^{<i>a</i>}	900	0.738	0.54	0.445	0.245	0.18
citrate ^{3–}	500	0.728	0.51	0.405	0.18	0.115
PO_4^{3-} , $Fe(CN)_6^{3-}$, $Cr(NH_3)_6^{3+}$, $Co(NH_3)_6^{3+}$, $Co(NH_3)_5H_2O^{3+}$	400	0.725	0.505	0.395	0.16	0.095
$C_{HARGE} = \pm 4$						
$Th^{4+}, Zr^{4+}, Ce^{4+}, Sn^{4+}$	1 100	0.588	0.35	0.255	0.10	0.065
Fe(CN) ₆ ⁴⁻	500	0.57	0.31	0.20	0.048	0.021
		COMPANY NO.	manufe de	1000 CONTRACTOR 100		

a. Lanthanides are elements 57–71 in the periodic table. SOURCE: J. Kielland, J. Am. Chem. Soc. 1937, 59, 1675.

	Neon Neon	Ar	Kr 1796	Ke mon 31.294	Ru Ladon 222018	DG anesson [294]		
N	• م	<u>م</u> ة –	× م	22	°36 €	Saine Og	11 Lu Lutetium 174.967	LL Lawrencium [262]
5 F F	و ۱۳.99		35 8com 79.9	53 Iodir 126.9	85 Astat 2093	117 Tennes [294	Yb terbium 73.055	obelium 59.101
16 VIA 6A	0 ^{Coygen} ^{15,999}	16 Sultur 32.066	34 Selenium 78.971	Tellurium T27.6	Polonium [208.982]	116 Livermoriun [293]	2 4	201 102 102 102 102 102 102 102
SA VIS	Nitrogen 14.007	D 50.974	AS Arsenic 74.922	Sb untimony 121.760	Bi Bismuth 208.980		⁶ Н	101 Mendel 258
* द द			831 minm 811 minm 831 minm	5 5 45	3% D		68 Er Erbium 167.259	100 Fermium 257.095
- 5 4	يرور ب	5 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32 6 0 0 1	S N L	° 5 P	14 Flero	Holmium 164.930	ES [254]
13 3A 3A	5 80ron 10.811		31 Ga Gallium 69.723	49 Indium 114.818	18 Thellium 204383	Nihoniur [286]		26 minimo 1.060.1
ents		12 18 28	Zn ^{Zm}	Cadmium Cadmium	Hg Mercury 200.592		^{ove} ^{ove}	98 Califé
eme		1 8 8		P D	Sold Sold Sold		65 Tb Terbiur 158.92	97 Bk Berkeliu 247.07
he El			,	47 47 10 10 10		S Rium Roon Roon	4 Gdd 157.25	
of tl		° (28 Nicks Z	46 Palladi 106.4	78 Platinu 195.00	Darmstar [281	EU sopium s1964	a 13061
able		°₽°		45 Rhođium 102.906	77 Ir Iridium 192.217	I09 Meitnerium [278]	2 min 2	26 26 26 26 26
lic T		" (Fe	Ru uthenium 101.07	OS Demium 190.23	HSSium [269]	Sr Ssmart 150	P Puttor 2344(0
erioc		88	26 anese n	C. 44	76 207		61 Promethiur 144.913	93 Neptuniun 237,048
ď			²⁵ گ	43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75 R ^{Hber}	ء موقع الم	eodymium 144.243	Uranium 238.029
		68 68	24 Chromiur 51:996	42 Molybden 35.95	T4 Tungster 183.84	106 Seaborgiu [266]	T dymium 1308	22 tinium 1036
		5 V 8 5 B	Vanadium S0.942		Ta Tantalum 180.948		Praseo P	9 2318 2318
		4 4 48	Li mium 1867	Zr onium 1224	H frium 8.49	Af riordium 261]	58 Ceriur 140.111	90 Thoriun 232.032
		-	22 41 41	2 40	72 H ⁴	104 Ruthe	7 La Lanthanum 138.905	
r		88 38 38	21 Scandiu 84956	39 Yttriur 88.906	57-71	89-103	5 ries	inide ries
28 IS 2	⁴ Beylium ^{9,012}	12 Mgg Magnessum 24.305		38 Strontium 87.62	S6 Ba Barium 137.328	88 Radium 226.025	Lantl Se	Act
Hydrogen 1,008	3 Lithium 6.941		19 Potassium 39.098	37 Rubidium 85.468	SS CS Cesium 132.905	87 Francium 223.020		

© 2017 Todd Helmenstine sciencenotes.org