Chemistry 222	Name	
Spring 2021		80 Points
Exam 1: Chapters 1-5		

Complete five (5) of the following problems. CLEARLY mark the problems you do not want graded. You must show your work to receive credit for problems requiring math. Report your answers with the appropriate number of significant figures.

Do five of problems 1-7. Clearly mark the problems you do not want graded. (16 pts each)

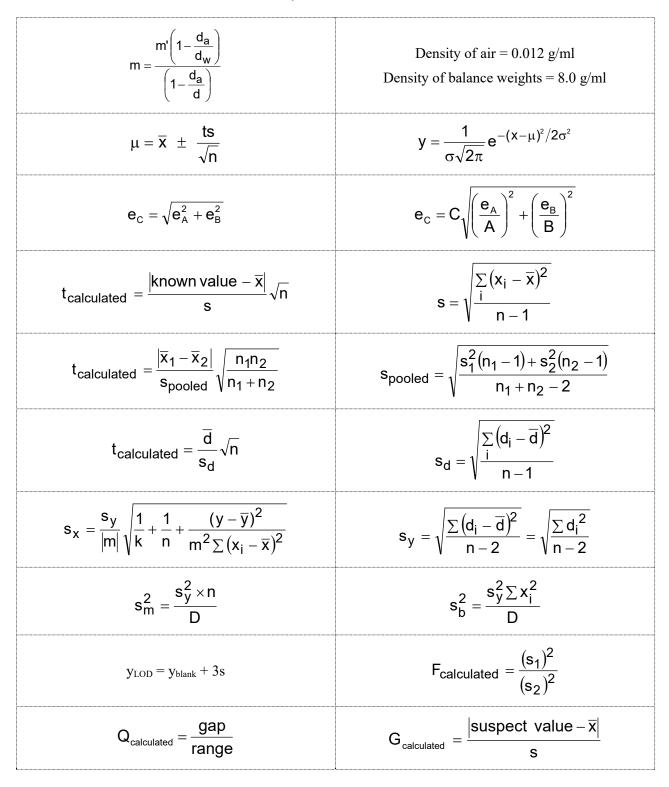
 A solution was prepared by dissolving 1.795 grams of a solid sample containing an unknown amount of lead in a total of 100.00 mL of solution, which was labeled solution A. Before analysis, 5.00 mL of solution A was pipetted into a 100.00 mL volumetric flask, mixed and diluted to the mark to form solution B. Then 10.00 mL of solution B was pipetted into a 25.00 mL volumetric flask, mixed and diluted to the mark to make solution C. Analysis of solution C determined that it had a lead concentration of 11.2 ppm. What was the percent lead by mass in the original solid sample? You may assume a density of 1.00 g/mL for all solutions. 2. A Standard Reference Material is certified to contain 45.4 ppm of an organic contaminant in soil. You analyze this material to characterize a new method you are developing. Your analysis gives values of 47.8, 47.4, 45.3, 48.1, and 47.2 ppm. Evaluate the results for suspect data and determine whether your results indicate the presence of systematic error in your method at the 95% confidence level. Justify your answer.

3. Acid solutions can be standardized using primary standard sodium carbonate, much like base solutions can be standardized using pure KHP as we did in lab. Below is data from a titration of a sodium carbonate sample with a solution of hydrochloric acid of unknown concentration. In this titration, approximately 25 mL of distilled water was used to dissolve the sodium carbonate that was dispensed from the weighing bottle into an Erlenmeyer flask. What is the molarity of the hydrochloric acid solution with its <u>absolute uncertainty</u>?

Initial mass of weighing bottle and sodium carbonate	32.1834±0.0002 g
Final mass of weighing bottle after sample was removed	30.9651±0.0002 g
Initial buret reading	2.83±0.02 mL
Final buret reading	39.45±0.02 mL
Molar mass of sodium carbonate	105.9885±0.0002 g/mol

- 4. Complete both parts in a few sentences. (8 pts each part)
 - a. Why do systematic (determinate) errors typically have a larger impact on the accuracy of a measurement than random (indeterminate) errors?

 b. You have been tasked with determining the limit of detection for a new instrumental technique for the determination of lead in drinking water. Describe how you would accomplish this task. Include a general description of the samples you would make and measure and how these measurements would be used to determine the LOD. 5. You are working to develop a new method for the determination of the sulfur content in coal. If successful, your method has the potential to be very valuable. To validate your method, you decide to compare it to an established, "Industry Standard" method. The weight percent sulfur of four <u>different</u> coal samples (each containing different amounts of S) was measured by the two different methods. Does your method give results that are consistent with the Industry Standard at the 95% confidence level?


Sample	1	2	3	4
Industry Standard Method	1.157	1.538	1.795	2.284
Your Method	1.151	1.534	1.785	2.280

6. You are working to determine the concentration of acetaminophen in an analgesic preparation by absorbance spectrophotometry. You prepare an unknown solution and series of standard solutions and measure the absorbance of each solution at 255 nm. The resulting data is shown below. Assuming a linear relationship between absorbance and concentration, describe how you would determine the 95% confidence interval for the acetaminophen concentration of the unknown. You DO NOT need to do any calculations, just clearly describe how you would go from the raw data to find the 95% confidence interval for the unknown. What key parameters will you calculate along the way? What value do you select for t?

[acetaminophen] (mM)	Absorbance at 255 nm
0.00	0.279
10.37	0.602
20.74	0.896
31.11	1.188
41.48	1.443
Unknown	0.785

7. You have been given the task of teaching a quantitative analysis student, Al Thumbs, the proper preparation and use of a Class A buret for titrations in order to obtain high quality quantitative results. Clearly describe your instructions to this student, include reminders of common pitfalls Al should avoid.

Possibly Useful Information

	Values	of Studen	nt's t	
	(Confidenc	e Level (%	%)
Degrees of Freedom	90	95	99.5	99.9
1	6.314	12.706	127.32	636.61
2	2.920	4.303	14.089	31.598
3	2.353	3.182	7.453	12.924
4	2.132	2.776	5.598	8.610
5	2.015	2.571	4.773	6.869
6	1.943	2.447	4.317	5.959
7	1.895	2.365	4.029	5.408
8	1.860	2.306	3.832	5.041
9	1.833	2.262	3.690	4.781
10	1.812	2.228	3.581	4.587
∞	1.645	1.960	2.807	3.291

Values of *Q* for rejection of data

# of Observations	Q (90% Confidence)
4	0.76
5	0.64
6	0.56

Grubbs Test for Outliers

# of Observations	G _{critical} At 95% confidence
4	1.463
5	1.672
6	1.822

Critical Values of F at the 95% Confidence Level

		Degrees of freedom for s ₁										
Degrees of freedom for s ₂	2	3	4	5	6	7	8	9	10			
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4			
3	9.55	9.28	9.12	9.01	8.94	8.89	8.84	8.81	8.79			
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96			
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74			

IA 1A Hydrogen 1.008	2 IIA 2A 4 Beyflium 9.012					Peri	odic T	able	of the	e Elem	ients	13 IIIA 3A 5 B Boron 10.811	14 IVA 4A 6 C Carbon 12.011	15 VA 5A 7 Nitrogen 14.007	16 VIA 6A 8 Oriygen 15.999	17 VIIA 7A 9 Fluorine 18.998	2 Heiur 4.003
Na Sodium 22.990	12 Mg Magnesium 24.305	3 ШВ 3В	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	— уш — 8	10	11 IB 1B	12 IIB 2B	13 Aluminum 26.982	14 Silicon 28.086	15 P Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argor 39.94
K totassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	23 Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe bron 55.845	27 CO Cobalt 58,933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn 2inc 65.38	31 Ga Gallium 69.723	32 Gee Germanium 72.631	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Krypto 83.79
Rb	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91,224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag 58ver 107.868	48 Cd Cadmium 112,414	49 In Indium 114.818	50 Sn 118.711	51 Sb Antimony 121.760	52 Tellurium 127.6	53 I 126.904	54 Xenor 131,29
Cs Cesium 132.905	56 Ba Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 OS Osmium 190,23	77 Ir Iridium 192.217	78 Pt Platinum 195.085	79 Au Gold 196.967	80 Hg Mercury 200.592	81 TI 204,383	B2 Pb Lead 207.2	83 Bi Bismuth 208,980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rr Rador 222.01
Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 Hs Hassium [269]	109 Mt Meitnerium [278]	110 DS Darmstadtium [281]	111 Rg Roentgenium [280]	112 Cn Copernicium [285]	113 Nh Nihonium [286]	114 Fl Flerovium [289]	115 Mc Moscovium [289]	116 LV Livermorium [293]	117 TS Tennessine [294]	118 Oganes [294
	Lantha Seri	Lant 13	hanum Ce 8.905 14	rium Prase 0.116 14	Pr dymium 0.908 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mium Prom 243 14	tethium Sama 4.913 150	irium Eur 1.36 15	opium Gado 1.964 15	7.25 Ter 15	bium Dyspi 8.925 162	rosium Ho 2.500 16	lmium E 54.930 1	rbium Th 57.259 16	ulium Ytt 8.934 12	erbium Lu 73.055 17	LU tetium 14.967
	Actir Ser	ies Ac	inium Th	prium Prot	Pa 02 Ctinium 1,036	ium Nep	10 94 P 10100 1048 94 Pluto 244	nium Am	tricium Cu	rium Berl	kelium Califo	ornium Eins	teinium Fe	mium Nen	elevium No	belium Law	Lr rencium 2621