Chemistry 222	Name	
Spring 2020		80 Points
Exam 2: Chapters 6-7		

Complete problem 1 and four (4) of problems 2-6. CLEARLY mark the problem you do not want graded. Show your work to receive credit for problems requiring math. Report your answers with the appropriate number of significant figures and with the appropriate units.

You <u>MUST</u> do problem 1. (16 points)

 Consider a 0.010 M silver nitrate solution that is saturated with silver carbonate AND silver chloride. Set up the equations necessary to determine the solubility of silver carbonate, considering the equilibria below. You must write the charge balance expression and at least one mass balance. Identify all unknowns and write enough explicit, independent mass balance, charge balance, and equilibrium expressions so that only algebra remains to solve for the unknowns. <u>A numerical answer is not necessary</u>.

Ag ₂ CO ₃	K_{sp} = 8.1 x 10 ⁻¹²	H_2CO_3	K_{a1} = 4.46 x 10 ⁻⁷ , K_{a2} = 4.69 x 10 ⁻¹¹
AgCl	K _{sp} = 1.8 x 10 ⁻¹⁰	H ₂ O	$K_w = 1.0 \times 10^{-14}$

Complete four (4) of problems 2-6. CLEARLY mark the problem you do not want graded. (16 points each)

2. In determining activity coefficients of ions, there are three primary factors that play a role. Identify these factors and briefly describe the role of these factors on the activity of an ion. Under what combination of these factors are we safest in assuming that activities and concentrations are equal? 3. A solution is prepared by mixing 0.175 grams sodium hydroxide, 25.0 mL 0.120 M hydrochloric acid and 20.0 mL 1.00 M acetic acid ($pK_a = 4.75$) and diluting to 100.0 mL. What is the pH of the resulting solution? *Do not consider activities.*

4. Given your unnatural passion for solution equilibria, you have been assigned the task of teaching a Quantitative Analysis class about the role of charge and mass balance in equilibrium systems. Briefly <u>define and illustrate</u> each term, using a solution containing 0.020 M HNO₃, 0.010 M KNO₃ and 0.10 M oxalic acid (H₂C₂O₄, pK_{a1} = 1.252, pK_{a2} = 4.266) as an example. Your answer must include example mass and charge balance expressions.

- 5. Sodium sulfate is slowly added to a solution containing 0.0500 M Ca²⁺(aq) and 0.0320 M Ag⁺(aq). The K_{sp} for calcium sulfate is 4.93 x 10⁻⁵ and the K_{sp} for silver sulfate is 1.20 x 10^{-5.}
 - a. What will be the concentration of $Ca^{2+}(aq)$ when $Ag_2SO_4(s)$ begins to precipitate?

b. What percentage of the Ca²⁺(aq) can be precipitated from the Ag⁺(aq) by this selective precipitation process??

6. Using activities, calculate the fluoride concentration in a saturated solution of calcium fluoride in a solution that is 0.010 F magnesium nitrate and 0.020 F sodium chloride. The K_{sp} for calcium fluoride is 3.2 x 10⁻¹¹, assume that all other salts are soluble. You may ignore the autoprotolysis of water and any acid-base character of fluoride. What fluoride concentration do you calculate if you ignore activities?

Possibly Useful Information

$K_a K_b = K_W = 1.0 \times 10^{-14}$	pH = -log [H ⁺]
y = mx + b	pH + pOH = 14
log $\gamma = \frac{-0.51z^2\sqrt{\mu}}{1 + (\alpha\sqrt{\mu}/305)}$ (with α in pm)	$\mu = \frac{1}{2} \sum_{i} c_i z_i^2$
$\Delta G = \Delta H - T\Delta S = -RTInK$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Activity coefficients for aqueous solutions at 25°C

	Ion size		Ionic s	strength	(µ, M)	
Ion	(a, pm)	0.001	0.005	0.01	0.05	0.1
$C_{HARGE} = \pm 1$						
H ⁺	900	0.967	0.933	0.914	0.86	0.83
$(C_6H_5)_2CHCO_2^-, (C_3H_7)_4N^+$	800	0.966	0.931	0.912	0.85	0.82
$(O_2N)_3C_6H_2O^-, (C_3H_7)_3NH^+, CH_3OC_6H_4CO_2^-$	700	0.965	0.930	0.909	0.845	0.81
$\mathrm{Li}^{\mp}, \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{C}\mathrm{O}_{2}^{-}, \mathrm{HOC}_{6}\mathrm{H}_{4}\mathrm{C}\mathrm{O}_{2}^{-}, \mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{C}\mathrm{O}_{2}^{-}, \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{C}\mathrm{H}_{2}\mathrm{C}\mathrm{O}_{2}^{-}, \mathrm{C}_{6}\mathrm{H}_{2}\mathrm{C}\mathrm{O}_{2}^{-}, \mathrm{C}_{6}\mathrm{H}_{2}\mathrm{C}\mathrm$						
$CH_2 = CHCH_2CO_2^-, (CH_3)_2CHCH_2CO_2^-, (CH_3CH_2)_4N^+, (C_3H_7)_2NH_2^+$	600	0.965	0.929	0.907	0.835	0.80
$Cl_2CHCO_2^-$, $Cl_3CCO_2^-$, $(CH_3CH_2)_3NH^+$, $(C_3H_7)NH_3^+$	500	0.964	0.928	0.904	0.83	0.79
Na^+ , $CdCl^+$, ClO_2^- , IO_3^- , HCO_3^- , $H_2PO_4^-$, HSO_3^- , $H_2AsO_4^-$,						
$Co(NH_3)_4(NO_2)_2^+$, $CH_3CO_2^-$, $CICH_2CO_2^-$, $(CH_3)_4N^+$,						
$(CH_3CH_2)_2NH_2^+, H_2NCH_2CO_2^-$	450	0.964	0.928	0.902	0.82	0.775
$^{+}\text{H}_{3}\text{NCH}_{2}\text{CO}_{2}\text{H}, (\text{CH}_{3})_{3}\text{NH}^{+}, \text{CH}_{3}\text{CH}_{2}\text{NH}_{3}^{+}$	400	0.964	0.927	0.901	0.815	0.77
OH^- , F^- , SCN^- , OCN^- , HS^- , CIO_3^- , CIO_4^- , BrO_3^- , IO_4^- , MnO_4^- ,						
HCO_2^- , $H_2citrate^-$, $CH_3NH_3^+$, $(CH_3)_2NH_2^+$	350	0.964	0.926	0.900	0.81	0.76
$K^+, Cl^-, Br^-, I^-, CN^-, NO_2^-, NO_3^-$	300	0.964	0.925	0.899	0.805	0.755
$Rb^+, Cs^+, NH_4^+, Tl^+, Ag^+$	250	0.964	0.924	0.898	0.80	0.75
$CHARGE = \pm 2$						
Mg ²⁺ , Be ²⁺	800	0.872	0.755	0.69	0.52	0.45
$CH_2(CH_2CH_2CO_2^-)_2, (CH_2CH_2CH_2CO_2^-)_2$	700	0.872	0.755	0.685	0.50	0.425
$Ca^{2+}, Cu^{2+}, Zn^{2+}, Sn^{2+}, Mn^{2+}, Fe^{2+}, Ni^{2+}, Co^{2+}, C_6H_4(CO_2^-)_2,$						
$H_2C(CH_2CO_2^-)_2, (CH_2CH_2CO_2^-)_2$	600	0.870	0.749	0.675	0.485	0.405
$Sr^{2+}, Ba^{2+}, Cd^{2+}, Hg^{2+}, S^{2-}, S_2O_4^{2-}, WO_4^{2-}, H_2C(CO_2^{-})_2, (CH_2CO_2^{-})_2,$						
$(CHOHCO_2^-)_2$	500	0.868	0.744	0.67	0.465	0.38
$Pb^{2+}, CO_3^{2-}, SO_3^{2-}, MoO_4^{2-}, Co(NH_3)_5Cl^{2+}, Fe(CN)_5NO^{2-}, C_2O_4^{2-}, C_$						
Hcitrate ^{2–}	450	0.867	0.742	0.665	0.455	0.37
Hg ₂ ²⁺ , SO ₄ ²⁻ , S ₂ O ₃ ²⁻ , S ₂ O ₆ ²⁻ , S ₂ O ₈ ²⁻ , SeO ₄ ²⁻ , CrO ₄ ²⁻ , HPO ₄ ²⁻	400	0.867	0.740	0.660	0.445	0.355
$CHARGE = \pm 3$						
Al^{3+} , Fe^{3+} , Cr^{3+} , Sc^{3+} , Y^{3+} , In^{3+} , lanthanides ^a	900	0.738	0.54	0.445	0.245	0.18
citrate ³⁻	500	0.728	0.51	0.405	0.18	0.115
PO_4^{3-} , $Fe(CN)_6^{3-}$, $Cr(NH_3)_6^{3+}$, $Co(NH_3)_6^{3+}$, $Co(NH_3)_5H_2O^{3+}$	400	0.725	0.505	0.395	0.16	0.095
$C_{HARGE} = \pm 4$						
$Th^{4+}, Zr^{4+}, Ce^{4+}, Sn^{4+}$	1 100	0.588	0.35	0.255	0.10	0.065
Fe(CN) ⁴⁻	500	0.57	0.31	0.20	0.048	0.021
a na thus an tha the second		2005-20	1969 - 6			

a. Lanthanides are elements 57–71 in the periodic table. source: J. Kielland, J. Am. Chem. Soc. 1937, 59, 1675.

1 IA						Pe	riod	ic Tal	ble o	f the	Elem	lents							VIIIA 8A	
Hydrogen 1.008	2 N N												13 日 13	124	- > 4	5 4 5	16 VIA	17 VIIA		
	Ba Ba												۲. ۲	ů.			s C	٤	٩N No	
Lithium 6.941	Beryflium 9.012												Boron 10.811	Carb 12.01	on Nite	ogen 0	hygen 5.999	Fluorine 18.998	Neon 20.180	
=	12												13	14	15	16	1	-	18	
Na	Σ	ĸ	4	s	9	7		80	6	10	F	12	Ā	S	-	•	s	ΰ	Ā	
Sodium 22.990	Magnesium 24.305	38 38	17B 4B	VB 58	VIB 68	58	8	Ĺ	 ∎∞	٢	81	11B 28	Aluminu 26.982	m 28.00	Phose 30	974 3	Sulfur 12.066	Chlorine 35.453	Argon 39.948	
19	20	21	22	33	24	25	26	27		8	29	30	31	32	33	34	32		36	
¥	ů	š	F	>	ບັ	Σ	с 2	e.	ů	ī	3	Zn	G	Ŭ	e A	S	Se	Ŗ	Υ Υ	
Potassium 39.098	Calcium 40.078	Scandium 44.956	Titanium 47,867	Vanadium \$0.942	Chromic 51.996	manga 54.93	nese 1 18 55	non B45	Cobalt 58.933	Nickel 58.693	Copper 63.546	Zinc 65.38	Gallium 69.723	72.63	nium Ars	enic Se 922 7	slenium 18.971	Bromine 79.904	Krypton 83.798	
37	38	39	40	11	42	43	4	45		9	47	48	49	50	51	52	23		54	
Rb	s	>	ц Г	qN	ž	ř		ŋ	Rh	РЧ	Aa	B	Ę	S	S	م	Te	H	Xe	
Rubidium 85.468	Strontium 87.62	Yttrium 88.906	Zirconiun 91.224	Niobium 92.906	Molybden 95.95	vum Technet 98.90	tium Ruth	1.07	thodium 102.906	Palladium 106.42	Silver 107.868	Cadmium 112.414	Indium 114.816	118.7	121 Anti	Teo Te	llurium 127.6	lodine 126.904	Xenon 131.294	
22	56	57-71	72	73	74	75	76	11		8	79	80	81	82	83	8	58		86	
ő	Ba		Ŧ	Ta	3	ž	٥	S	ŗ	ž	Au	На	F	đ	ш _0		00	At	Rn	
Cesium 132.905	Barium 137.328		Hafnium 178.49	Tantalum 180.948	Tungste 183.84	n Rhenii 186.2	07 05t	mium 0.23	Iridium 192.217	Platinum 195.085	Gold 196.967	Mercury 200.592	Thalliun 204.383	Lee 207	2 208	nuth Po	Monium 08.982]	Astatine 209.987	Radon 222.018	
87	88	89-103	104	105	106	107	108	10	6	10	111	112	113	114	115	116	=	-	118	
ŗ	Ra		Rf	qD	S	8	۲ ۲	ł	ž	õ	Ra	ຽ	ź		2	2	2	Ts	0d	
Francium 223.020	Radium 226.025		Rutherfordi [261]	um Dubnium [262]	Seaborgi [266]	um Bohri	um Har	ssium M	(278)	Darmstadtium [281]	Roentgenium [280]	Copernicium [285]	Nihoniu [286]	m Flerov [285	ium Mosc 1] [2]	ovium Live 89]	rmorium [293]	ennessine [294]	Oganesson [294]	
		0		60				3	3	3	Y	22				60	64	5		
	Lantha	nide	e	Ce C	٦ ۲	PN	Pm	Sm	Ē	פ	Ч Ч	_ و	2	HO	Ë	Ţ	٩×		_	
	Ser	es Lan	thanum 8.905	Cerium Pran 140.116	seodymium 140.908	Neodymium 144.243	Promethium 144.913	Samarium 150.36	151.96	um Gadol	Inium Ter 25 15	bium Dyn	prosum 62.500	Holmium 164.930	Erbium 167.259	Thulium 168.934	Ytterbiur 173.055	n Lutet	56	
		68	90	91	6		33	94	95	96	97	- 88	56		100	101	102	103		
	Seri	es	ų	Ч	Pa	5	dz	Pu	Ā	ט ב	2	×	t	S	Ē	Md	ž		L .	
		22	tinium 27.028	232.038	otactinium 231.036	Uranium 238.029	Neptunium 237.048	Plutonium 244.064	243.06	51 247.	1um 8en 070 24	7.070 2	formium 51.080	Einsteinium [254]	Fermium 257.095	Mendelevium 258.1	n Nobellur 259.101	n Lawren [26	uno E	
																		© 2017	odd Helmenstine sciencenotes.org	