Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part I: Complete all of problems 1-10

- 1. What is the oxidizing agent in this reaction: $Mg(s) + Cl_2(g) \rightarrow Mg^{2+}(aq) + 2Cl^{-}(aq)$? (4 points)
 - a. Mg(s)
- b. $Cl_2(g)$
- c. $Mg^{2+}(aq)$
- d. Cl⁻(aq)
- Answer _____
- 2. Which of these reagents will oxidize Al to Al³⁺, but not oxidize Pb to Pb²⁺. (4 points)
 - a. Br₂
- b. Ca²⁺
- c. Fe²⁺
- d. Br
- Answer _____

Answer _____

3. Consider the titration curve below. The curve represents (4 points)

- a. the titration of a strong acid with a strong base.
- b. the titration of a weak acid with a strong base.
- c. the titration of a weak base with a strong acid.
- d. the titration of a strong base with a strong acid.
- 4. The equilibrium concentration of barium ion in a saturated solution of barium fluoride is found to be $7.21 \times 10^{-3} M$. What is the K_{sp} for barium fluoride? (4 points)
 - a. 7.21x10⁻³
- b. 1.44x10⁻²
- c. 7.50x10⁻⁷
- d. 1.50x10⁻⁶
- Answer _____
- 5. From the structures below, identify the two structures that represent the same compound. (4 points)

a. A and B

A and C

- c. B and C
- d. B and D
- e. C and D
- Answer _____
- 6. Define the following in one or two sentences each. (6 points)
 - a. anode

b.

- b. stereoisomer
- c. low spin

Formula of complex	trans-[Co(en) ₂ Cl ₂] ⁺	
Name of complex		tris(oxalato)ferrate(III)
Metal oxidation state		
Coordination number		
Sketch		
8. A 0.641 g samp the molar mass (10 points)	ole of a monoprotic acid is dissolved in of the acid if 14.5 mL of the KOH solu	water and titrated with 0.230 M KOH. What is tion is required to neutralize the sample?
		Answer

€.	A galvanic (voltaic) cell consists of an electrode composed of iron immersed in a 1.0 M iron (II) ion solution and another electrode composed of silver immersed in a 1.0 M silver (I) ion solution, connected by a salt bridge. Identify the cathode and anode and calculate the standard potential for this cell at 25 C. (10 points)
	Answer
10.	The K_{sp} of PbBr ₂ is 6.60×10^{-6} . What is the molar solubility of PbBr ₂ in 0.511 M sodium bromide? (10 points)
	Answer

Part II. Answer three (3) of problems	11-14. Clearly ma	ark the problems you	do not want graded.
12 points each.			

11. Calculate the potential for the galvanic cell below using the given conditions. You may assume a temperature of 298K.

Al(s) | 0.234 M Al³+(aq) || 0.0115 M Sn²+(aq) | Sn(s)

- 12. Maleic acid ($C_4H_4O_4$, molar mass 116.1 g/mol, p K_{a1} = 1.92, p K_{a2} = 6.27) is a weak diprotic acid that is often used to increase the stability of drug compounds. Calculate the pH at <u>any three (3)</u> of the following points in the titration of 20.0 mL of 0.100 M maleic acid with 0.100 M NaOH.
 - a. Before the addition of NaOH
 - b. After the addition of 10.0 mL NaOH
 - c. After the addition of 20.0 mL NaOH
 - d. After the addition of 30.0 mL NaOH
 - e. After the addition of 50.0 mL NaOH

13.	You have a bottle of a white solid that you believe to be either calcium hydroxide ($K_{sp} = 6.5 \times 10^{-6}$) or manganese (II) hydroxide ($K_{sp} = 1.6 \times 10^{-13}$). You prepare a saturated solution of the salt and measure the solution's pH. If the pH of the solution is 9.84, what is the identity of your unknown salt? Justify your answer with a calculation.
	Answer

14. Cobalt (III) forms octahedral complexes with fluoride ion and ammonia with the formulae [CoF₆]³⁻ and [Co(NH₃)₆]³⁺, respectively. Below are two possible orbital energy diagrams for these species. Which of the diagrams corresponds to the fluoride complex and which one corresponds to the ammonia complex? Clearly explain your reasoning.

	Dia	gram <i>A</i>	Λ
			$d_{z^2}, d_{x^2-v^2}$
			2 ,
$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	d_{xy} , d_{xz} , d_{yz}
			,,

	Dia	agram]	В
	\uparrow	\uparrow	$d_{z^2}, d_{x^2-v^2}$
			. 2 ,
$\uparrow\downarrow$	\uparrow	\uparrow	d_{xy}, d_{xz}, d_{yz}

Possibly Useful Information

R = 8.31441 J mol ⁻¹ K ⁻¹	$^{\circ}$ C = K – 273.15	$R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$
F = 96485 C mol ⁻¹	$1 \text{ A} = 1 \text{ C sec}^{-1}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o} = -RTlnK$	$\Delta G = \Delta G^{\circ} - RT \ln Q$	$\Delta G = -nFE$
$pH = pK_a + log \left(\frac{[conjugatebase]}{[weakacid]} \right)$	pH + pOH = 14	$K_a K_b = K_w = 1.00 \text{ x } 10^{-14}$
$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ or $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$	$E=E^{o}-\frac{2.303RT}{nF}logQ$	$E=E^{\circ}-\frac{0.05916V}{n}\log Q$

$\underline{\textbf{Weak Field}} \; I^- < Br^- < Cl^- < F^- < OH^- < C_2O_4{}^{2-} \approx H_2O < NH_3 < en < NO_2{}^- < CN^- \; \underline{\textbf{Strong Field}} \; \\$

Abbreviation	Name	Formula
en	Ethylenediamine	H ₂ N, CH ₂ —CH ₂
ox ^{2- a}	Oxalato	.o. c-c
EDTA ^{4-b}	Ethylenediaminetetraacetato	$\begin{array}{c} : \bigcirc : \overrightarrow{\bigcirc} : \bigcirc : \overrightarrow{\bigcirc} : \bigcirc : \bigcirc : \\ : \bigcirc : \bigcirc : - C - C H_2 \\ : \bigcirc : - C - C H_2 \\ \end{array} $ $\begin{array}{c} : \bigcirc : C + C + C + C \\ : \bigcirc : C + C + C \\ : \bigcirc : C + C + C \\ \end{array} $ $\begin{array}{c} : \bigcirc : C + C + C \\ : C + C + C$

1A 1A 1	2		Periodic Table of the Elements												16	17	VIIIA 8A Pe
Hydrogen	IIA											IIIA	14 IVA	15 VA	VIA	VIIA	Helium
1.008	2A											3A	4A	5A	6A	7A	4.003
Lithium 6.941	Be Beryllium 9.012			5 B Boron 10.811									6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 F Fluorine 18.998	Ne Neon 20.180
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
Sodium	Magnesium	ШВ	IVB	VB	VIB	VIIB	•	— vііі —		IB	IIB	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.990	24.305	3B	4B	5B	6B	7B	, /	8	<u> </u>	1B	2B	26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca	Sc	∥ Ti	∥ V	Cr	Mn	∣ Fe	Co	Ni	Cu	Zn	Ga	∥ Ge	∣ As	Se	Br	∥ Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.631	74.922	78.971	79.904	83.798
37 D.L.	38	39 V	40 _	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	T	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	l I	Xe
Rubidium 85.468	Strontium 87.62	Yttrium 88.906	Zirconium 91.224	Niobium 92.906	Molybdenum 95.95	Technetium 98.907	Ruthenium 101.07	Rhodium 102.906	Palladium 106.42	Silver 107.868	Cadmium 112.414	Indium 114.818	Tin 118.711	Antimony 121.760	Tellurium 127.6	Iodine 126.904	Xenon 131.294
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.905	137.328		178.49	180.948	183.84	186.207	190.23	192.217	195.085	196.967	200.592	204.383	207.2	208.980	[208.982]	209.987	222.018
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg Seaborgium	Bh	Hs	Mt	Ds	Rg	Cn	Nh	∥ FI	Mc	Lv	Ts	Og
Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
223.020	226.025		[261]	[262]	[266]	[264]	[269]	[278]	[281]	[280]	[285]	[286]	[289]	[289]	[293]	[294]	[294]

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Series	Lanthanum 138.905	Cerium 140.116	Praseodymium 140.908	Neodymium 144.243	Promethium 144.913	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158.925	Dysprosium 162.500	Holmium 164.930	Erbium 167.259	Thulium 168.934	Ytterbium 173.055	Lutetium 174.967
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinide Series	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Series	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	227.028	232.038	231.036	238.029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

TABLE 20.1 Some Selected Standard Electrode (Reduction) Potentials at 25 $^{\circ}\text{C}$

Reduction Half-Reaction	E°, ∨
Acidic solution	
$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.866
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2O(1)$	+2.075
$S_2O_8^{2-}(aq) + 2e^- \longrightarrow 2SO_4^{2-}(aq)$	+2.01
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(l)$	+1.763
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(1)$	+1.51
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$	+1.455
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.358
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	+1.33
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O(1)$	+1.23
$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(1)$	+1.229
$2 IO_3^-(aq) + 12 H^+(aq) + 10 e^- \longrightarrow I_2(s) + 6 H_2O(l)$	+1.20
$Br_2(1) + 2 e^- \longrightarrow 2 Br^-(aq)$	+1.065
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0.956
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.800
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.771
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	+0.695
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.340
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1) + SO_2(g)$	+0.17
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154
$S(s) + 2 H^{+}(aq) + 2 e^{-} \longrightarrow H_2S(g)$	+0.14
$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.125
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}(\operatorname{s})$	-0.137
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.440
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.763
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.676
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.356
$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2.713
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.84
$K^+(aq) + e^- \longrightarrow K(s)$	-2.924
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.040