Chem 131

Name \qquad
Exam 4, Ch 17, 18, 20, 24
December 4, 2019
100 Points
Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part I: Complete all of problems 1-10

1. What is the oxidizing agent in this reaction: $\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}$aq) ? (4 points)
a. $\operatorname{Mg}(\mathrm{s})$
b. $\quad \mathrm{Cl}_{2}(\mathrm{~g})$
c. $\mathrm{Mg}^{2+}(\mathrm{aq})$
d. $\mathrm{Cl}^{-}(\mathrm{aq})$
Answer \qquad
2. Which of these reagents will oxidize Al to Al^{3+}, but not oxidize Pb to Pb^{2+}. (4 points)
a. Br_{2}
b. Ca^{2+}
c. Fe^{2+}
d. Br^{-}
Answer \qquad
3. Consider the titration curve below. The curve represents (4 points)

a. the titration of a strong acid with a strong base.
b. the titration of a weak acid with a strong base.

Answer \qquad
c. the titration of a weak base with a strong acid.
d. the titration of a strong base with a strong acid.
4. The equilibrium concentration of barium ion in a saturated solution of barium fluoride is found to be $7.21 \times 10^{-3} \mathrm{M}$. What is the K_{sp} for barium fluoride? (4 points)
a. 7.21×10^{-3}
b. 1.44×10^{-2}
c. 7.50×10^{-7}
d. 1.50×10^{-6}
Answer \qquad
5. From the structures below, identify the two structures that represent the same compound. (4 points)

a. A and B
c. B and C
b. A and C
d. B and D
e. C and D

Answer \qquad
6. Define the following in one or two sentences each. (6 points)
a. anode
b. stereoisomer
c. low spin
7. Complete the table below. (10 points)

Formula of complex	trans-[Co(en) $\left.\mathrm{Cl}_{2}\right]^{+}$	
Name of complex		tris(oxalato)ferrate(III)
Metal oxidation state		
Coordination number		
Sketch		

8. A 0.641 g sample of a monoprotic acid is dissolved in water and titrated with 0.230 M KOH . What is the molar mass of the acid if 14.5 mL of the KOH solution is required to neutralize the sample? (10 points)

Answer
9. A galvanic (voltaic) cell consists of an electrode composed of iron immersed in a 1.0 M iron (II) ion solution and another electrode composed of silver immersed in a 1.0 M silver (I) ion solution, connected by a salt bridge. Identify the cathode and anode and calculate the standard potential for this cell at 25 C. (10 points)

Answer

10. The $\mathrm{K}_{\text {sp }}$ of PbBr_{2} is 6.60×10^{-6}. What is the molar solubility of PbBr_{2} in 0.511 M sodium bromide? (10 points)
\qquad

Part II. Answer three (3) of problems 11-14. Clearly mark the problems you do not want graded. 12 points each.
11. Calculate the potential for the galvanic cell below using the given conditions. You may assume a temperature of 298 K .

$$
\mathrm{Al}(\mathrm{~s})\left|0.234 \mathrm{M} \mathrm{Al}^{3+}(\mathrm{aq}) \| 0.0115 \mathrm{M} \mathrm{Sn}^{2+}(\mathrm{aq})\right| \operatorname{Sn}(\mathrm{s})
$$

12. Maleic acid $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right.$, molar mass $\left.116.1 \mathrm{~g} / \mathrm{mol}^{2} \mathrm{pK}_{\mathrm{a} 1}=1.92, \mathrm{pK}_{\mathrm{a} 2}=6.27\right)$ is a weak diprotic acid that is often used to increase the stability of drug compounds. Calculate the pH at any three (3) of the following points in the titration of 20.0 mL of 0.100 M maleic acid with 0.100 M NaOH .
a. Before the addition of NaOH
b. After the addition of 10.0 mL NaOH
c. After the addition of 20.0 mL NaOH
d. After the addition of 30.0 mL NaOH
e. After the addition of 50.0 mL NaOH
13. You have a bottle of a white solid that you believe to be either calcium hydroxide $\left(\mathrm{K}_{\mathrm{sp}}=6.5 \times 10^{-6}\right)$ or manganese (II) hydroxide ($\mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-13}$). You prepare a saturated solution of the salt and measure the solution's pH . If the pH of the solution is 9.84 , what is the identity of your unknown salt? Justify your answer with a calculation.

Answer

14. Cobalt (III) forms octahedral complexes with fluoride ion and ammonia with the formulae $\left[\mathrm{CoF}_{6}\right]^{3-}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, respectively. Below are two possible orbital energy diagrams for these species. Which of the diagrams corresponds to the fluoride complex and which one corresponds to the ammonia complex? Clearly explain your reasoning.

Possibly Useful Information

$\mathrm{R}=8.31441 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	${ }^{\circ} \mathrm{C}=\mathrm{K}-273.15$	$\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{F}=96485 \mathrm{C} \mathrm{mol}^{-1}$	$1 \mathrm{~A}=1 \mathrm{C} \mathrm{sec}{ }^{-1}$	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}=-\mathrm{RT} \ln \mathrm{K}$	$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}-\mathrm{RTln} \mathrm{Q}$	$\Delta \mathrm{G}=\mathrm{nFE}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { conjugatebase }]}{[\text { weak acid }]}\right)$	$\mathrm{pH}+\mathrm{pOH}=14$	$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.00 \times 10^{-14}$
$\begin{aligned} & \mathrm{E}_{\text {cell }}^{o}=\mathrm{E}_{\text {cathode }}^{o}-\mathrm{E}_{\text {anode }}^{o} \\ & \text { or } \\ & \mathrm{E}_{\text {cell }}^{o}=\mathrm{E}_{\text {cathode }}^{o}-\mathrm{E}_{\text {anode }}^{o} \end{aligned}$	$\mathrm{E}=\mathrm{E}^{\mathrm{o}}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \mathrm{Q}$	$\mathrm{E}=\mathrm{E}^{\mathrm{o}}-\frac{0.05916 \mathrm{~V}}{\mathrm{n}} \log \mathrm{Q}$

Weak Field $\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \approx \mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-} \underline{\text { Strong Field }}$

Reduction Half-Reaction	E°, V
Acidic solution	
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.866
$\mathrm{O}_{3}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+2.075
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	+2.01
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.763
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.51
$\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.455
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.358
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.33
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.229
$2 \mathrm{IO}_{3}{ }^{-}(\mathrm{aq})+12 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \longrightarrow \mathrm{I}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.20
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.065
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+0.956
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})$	+0.800
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.771
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	+0.695
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.535
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$	+0.340
$\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})$	+0.17
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.154
$\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0.14
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$	0
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}(\mathrm{s})$	-0.125
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}(\mathrm{s})$	-0.137
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{s})$	-0.440
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(\mathrm{s})$	-0.763
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(\mathrm{s})$	-1.676
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}(\mathrm{s})$	-2.356
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Na}(\mathrm{s})$	-2.713
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ca}(\mathrm{s})$	-2.84
$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{K}(\mathrm{s})$	-2.924
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Li}(\mathrm{s})$	-3.040

