Chem 131
Exam 3, Ch 17, 18, 20, 24
100 Points

Name
April 25, 2012

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

1. The titration curve show below is for the titration of 0.10 M acid with 0.10 M NaOH . Which of the acids below must have been titrated to generate this curve?

a. HCl
b. $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$
c. $\mathrm{HClO}_{2}, \mathrm{~K}_{\mathrm{a}}=1.2 \times 10^{-2}$

Answer \qquad b \qquad
d. $\mathrm{HOCl}, \mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}$
e. Not enough information to tell.
2. Consider the following salts: $\mathrm{AgI}^{2}, \mathrm{Pbl}_{2}$, and Col_{3}. If all three salts have the same K_{sp}, which of the salts has the largest solubility?
a. Agl
b. Pbl_{2}
c. Col_{3}

Answer \qquad c \qquad
d. They have the same solubility.
3. Based on the data below, arrange the following in order of increasing strength as a reducing agent. Poorest reducing agent \rightarrow Best reducing agent.

$\mathrm{Fe}^{3+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Fe}^{2+}$	$\mathrm{E}^{\circ}=+0.77 \mathrm{~V}$			
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{E}^{\circ}=+1.78 \mathrm{~V}$	$:$	$2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightleftarrows \mathrm{H}_{2}$	$\mathrm{E}^{\circ}=+0.00 \mathrm{~V}$
:---	:---			
$\mathrm{ClO}_{2}+\mathrm{e}^{-} \rightleftarrows \mathrm{ClO}_{2}^{-}$	$\mathrm{E}^{\circ}=+0.91 \mathrm{~V}$			

a. $\mathrm{H}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}<\mathrm{H}_{2}<\mathrm{Fe}^{2+}$
b. $\mathrm{H}_{2} \mathrm{O}<\mathrm{Fe}^{2+}<\mathrm{H}_{2}<\mathrm{ClO}_{2}^{-}$
c. $\mathrm{H}_{2}<\mathrm{ClO}_{2}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{Fe}^{2+}$
d. $\mathrm{H}_{2}<\mathrm{Fe}^{2+}<\mathrm{ClO}_{2}<\mathrm{H}_{2} \mathrm{O}$

There was significant confusion on the interpretation of this question so l chose to give everyone full credit on \#3.

Part I: Complete all of problems 3-7

4. Define three of the following in a maximum of three sentences per item: (12 points)
a. equivalence point:

Part of a titration when a stoichiometric amount of titrant has been added to consume all of the analyte. Neither reactant is in excess.
b. coordination number:

The number of positions around a central atom where ligands are attached in a complex.
c. electrolytic cell:

Electrochemical cell where a nonsponaneous reaction is carried out by electrolysis (supplying an external potential).
d. bidentate:

A ligand that has two points of attachment with the metal in a complex.
5. $\mathrm{KI}(\mathrm{aq})$ is slowly added to a solution with $\left[\mathrm{Pb}^{2+}\right]=\left[\mathrm{Ag}^{+}\right]=0.10 \mathrm{M}$. What precipitate should form first? What $[I]$ is required for the second cation to begin to precipitate? Justify your answers with calculations. K_{sp} for lead iodide is $7.1 \times 10^{-9}, \mathrm{~K}_{\mathrm{sp}}$ for silver iodide is 8.5×10^{-17} (12 points)

We need to determine the iodide concentration required to cause each salt to precipitate.
Solve two $\mathrm{K}_{\text {sp }}$ systems:

$$
\mathrm{PbI}_{2} \rightleftarrows \mathrm{~Pb}^{2+}+2 \mathrm{l}^{-} \quad \mathrm{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{l}^{-}\right]^{2}
$$

So, $\mathrm{K}_{\text {sp }}=[0.10][\mathrm{I}-]^{2}$ and $[\mathrm{I}]=\left(\mathrm{K}_{\text {sp }} / 0.10\right)^{1 / 2}=\left(7.1 \times 10^{-8}\right)^{1 / 2}=2.66 \times 10^{-4} \mathrm{M}$

$$
\mathrm{AgI} \rightleftarrows \mathrm{Ag}^{+}+\mathrm{I}^{-} \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{L}^{-}\right]
$$

So, $\mathrm{K}_{\text {sp }}=[0.10]\left[\mathrm{I}^{-}\right]$and $\left[\mathrm{I}^{-}\right]=\left(\mathrm{K}_{\text {sp }} / 0.10\right)=8.5 \times 10^{-16} \mathrm{M}$

So, Agl will precipitate first because it requires less iodide to satisfy the $\mathrm{K}_{\text {sp }}$ expression. Lead iodide will begin to precipitate when the iodide concentration reached 0.000266 M .
6. Consider the titration of 20.0 mL of 0.200 M lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}, \mathrm{pK}_{\mathrm{a}}=3.86\right)$ with 0.200 M NaOH .
a. Calculate the pH after the addition of two of the following volumes of $\mathrm{NaOH}: 0.00 \mathrm{~mL}$, $5.00 \mathrm{~mL}, 10.00 \mathrm{~mL}, 15.00 \mathrm{~mL}, 20.00 \mathrm{~mL}, 25.00 \mathrm{~mL}, 30.00 \mathrm{~mL}$ (10 points)

Depending on the volumes you choose, your approach to a pH will differ. At 0 mL , you have only HA and can use an ICE table to find [H^{+}. At 5, 10, and 15 mL , you have a buffer solution and can use the Henderson-Hasslebach equation or an ICE table. At 20 mL , you have a solution of the weak base, A^{-}, and can use an ICE table to find [OH^{-}], At 25 and 30 mL , you have excess NaOH present.

You must remember that as NaOH is added, the HA must be consumed as the weak acid is converted to its conjugate base.

Volume (mL)	mmol HA	mmol A $^{\text {mmol OH }}$				
0.00	4.00	0	Total excess	Approach	pH	
volume (mL)	ICE table for HA	2.28				
5.00	3.00	1.00	0	20.00	25.00	Buffer or ICE table
3.38						
10.00	2.00	2.00	0	30.00	pH = pK	3.86
15.00	1.00	3.00	0	35.00	Buffer or ICE table	4.33
20.00 (eq pt.)	0.00	4.00	0	40.00	ICE table for HA	8.43
25.00	0.00	4.00	1.00	45.00	Excess OH $^{-}$	12.35
30.00	0.00	4.00	1.00	50.00	Excess OH	12.60

b. Would methyl orange ($\mathrm{pK}_{\mathrm{HIn}}=4.0$) be an appropriate indicator for this titration? Why or Why not? (4 points)

Since this is a titration of a weak acid with a strong base, the pH at the equivalence point will be slightly basic and we need an indicator whose transition range (near the $\mathrm{pK}_{\text {HIn }}$) occurs at a slightly basic pH . Since methyl orange has a $\mathrm{pK}_{\mathrm{HIn}}$ of 4.0, it will change color prior to the solution becoming basic, therefore it is not a suitable indicator.

Part II. Electrochemistry. Answer two (2) of problems 7-9. Clearly mark the problem you do not want graded. 14 points each.

7. In electrorefining, impure metals, such as copper and gold are purified via electrolysis. For copper, an impure piece of copper ore is used as the anode and pure copper as the cathode. Both electrodes are immersed in a solution of copper (II) sulfate and a current is passed through the cell, resulting in deposition of pure copper on the cathode. If a current of 1.75 A is passed for 1 hour and 45 minutes, what mass of copper should deposit?

$$
\begin{gathered}
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{\circ} \\
\frac{1.75 \mathrm{C}}{\mathrm{~s}} \times \frac{105 \mathrm{~min}}{} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{1 \mathrm{~mol} \mathrm{e}^{-}}{96485 \mathrm{C}} \times \frac{1 \mathrm{~mol} \mathrm{Cu}}{2 \mathrm{~mol} \mathrm{e}^{-}} \times \frac{63.546 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{Cu}}=3.63 \mathrm{~g} \mathrm{Cu}
\end{gathered}
$$

8. The potential of the electrochemical cell below was measured to be +0.0567 V . What is the $\mathrm{K}_{\text {sp }}$ for Pbl_{2} ? The E° for $\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Pb}^{\circ}$ is -0.125 V

$$
\mathrm{Pb}(\mathrm{~s})\left|\mathrm{Pb}^{2+}\left(\mathrm{sat}{ }^{\prime} \mathrm{Pbl}_{2}\right) \| \mathrm{Pb}^{2+}(0.100 \mathrm{M})\right| \mathrm{Pb}(\mathrm{~s})
$$

The overall cell reaction is:

$$
\mathrm{Pb}_{\mathrm{a}}+\mathrm{Pb}^{2+}{ }_{\mathrm{c}} \rightleftarrows \mathrm{~Pb}^{\circ}{ }_{\mathrm{c}}+\mathrm{Pb}^{2+}{ }_{\mathrm{a}}
$$

Where the c and a subscripts refer to the cathode and anode compartments.

$$
\begin{gathered}
\mathrm{E}_{\text {cell }}^{0}=\mathrm{E}_{\text {cathode }}^{\circ}-\mathrm{E}_{\text {anode }}^{0}=-0.125 \mathrm{~V}-(-0.125 \mathrm{~V})=0.000 \mathrm{~V} \\
\mathrm{E}_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {cell }}-\frac{0.05916}{2} \log \frac{\left[\mathrm{~Pb}^{2+}\right]_{a}}{\left[\mathrm{~Pb}^{2+}\right]_{\mathrm{c}}}=0.000 \mathrm{~V}-\frac{0.05916}{2} \log \frac{\left[\mathrm{~Pb}^{2+}\right]_{a}}{1 \mathrm{M}}
\end{gathered}
$$

So

$$
+0.0567 \mathrm{~V}=-\frac{0.05916}{2} \log \frac{\left[\mathrm{~Pb}^{2+}\right]_{a}}{1 \mathrm{M}}
$$

Solving for $\left[\mathrm{Pb}^{2+}\right]:\left[\mathrm{Pb}^{2+}\right]=10^{2 \times 0.0567 \mathrm{~V} / 0.05916 \mathrm{~V}}=0.01214 \mathrm{M}$
Our only source of Pb^{2+} is the dissociation of Pbl_{2}, so: $\mathrm{Pb}^{2+}=0.01214 \mathrm{M}$ and $\left[\mathrm{l}^{-}\right]=2\left[\mathrm{~Pb}^{2+}\right]=$ 0.02428 M. and

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{I}^{2}\right]^{2}=[0.01214][0.02428]^{2}=1.79 \times 10^{-6}
$$

9. Consider a galvanic cell consisting of one half cell with a gold wire dipped in a solution containing Au^{3+}, and a second half cell containing a tin wire immersed in Sn^{2+}. The standard reduction potentials are given below.

$$
\begin{array}{ll}
\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightleftarrows \mathrm{Au}^{\circ} & \mathrm{E}^{\circ}=+1.500 \mathrm{~V} \\
\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Sn}^{\circ} & \mathrm{E}^{\circ}=-0.137 \mathrm{~V}
\end{array}
$$

a. Determine the spontaneous overall cell reaction and calculate $\mathrm{E}^{\circ}{ }_{\text {cell }}$. Indicate which electrode is behaving as the anode and which is behaving as the cathode. (5 points)

$$
\begin{array}{rcr}
\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightleftarrows \mathrm{Au}^{\circ} & \mathrm{E}^{\circ}=+1.500 \mathrm{~V} & \text { Cathode } \\
\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Sn}^{\circ} & \mathrm{E}^{\circ}=-0.137 \mathrm{~V} & \text { Anode } \\
& 2 \mathrm{Au}^{3+}+3 \mathrm{Sn}^{\circ} \rightleftarrows 2 \mathrm{Au}^{\circ}+3 \mathrm{Sn}^{2+} & \\
\mathrm{E}_{\text {cell }}^{\circ}=\mathrm{E}_{\text {cathode }}^{\circ}-\mathrm{E}_{\text {anode }}^{\circ}=+1.500-(-0.137) \mathrm{V}=+1.637 \mathrm{~V}
\end{array}
$$

b. Calculate K for the cell reaction at $25^{\circ} \mathrm{C}$. If you did not get a result for part a, propose a reasonable value. (4 points)

$$
\begin{gathered}
-\mathrm{nFE} E^{\circ}=-\mathrm{RT} \operatorname{InK} \\
-\mathrm{nFE} /(-\mathrm{RT})=\operatorname{InK}
\end{gathered}
$$

$$
\text { InK }=-(6 \mathrm{~mol} \mathrm{e}-\times 96485 \mathrm{C} / \mathrm{mol} \mathrm{e} x+1.673 \mathrm{~V}) /(8.31441 \mathrm{~J} / \mathrm{molK} \times 298 \mathrm{~K})=382.5
$$

$$
\mathrm{K}=\mathrm{e}^{382.5}=1.31 \times 10^{166}(\mathrm{HUGE})
$$

Note: this number may make your calculator unhappy! Getting to the point of $K=e^{382.5}$ will earn you full credit.
c. Calculate $\mathrm{E}_{\text {cell }}$ at $25^{\circ} \mathrm{C}$ when $\left[\mathrm{Au}^{3+}\right]=0.0100 \mathrm{M}$ and $\left[\mathrm{Sn}^{2+}\right]=0.00100 \mathrm{M}$. (5 points)
$E=E^{\circ}-\frac{0.05916 \log \left[\mathrm{Sn}^{2+}\right]^{3}}{\left[\mathrm{Au}^{3+}\right]^{2}}=+1.637 \mathrm{~V}-\frac{\left.0.05916 \log \frac{[0.0010 \mathrm{M}]^{3}}{6}=+1.686 \mathrm{~V} .0 .010 \mathrm{M}\right]^{2}}{\mathrm{n}}=+$

Part III. Transition Metals and Coordination Chemistry. Complete two (2) of problems 10-12. Clearly mark the problem you do not want graded. (14 points each)
10. Complete the table below.

Formula	$m e r-\left[\mathrm{CrCl}(\mathrm{ox})\left(\mathrm{NH}_{3}\right)_{3}\right]$	cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
Name	mer-triamminechloroxalatochromium (III)	cis-diamminedichloroplatinum (II)
Metal oxidation state	+3	+2
Coordination number	6	4
Sketch		

11. Consider the two complexes: $\left[\mathrm{MnCl}_{6}\right]^{4-}$ and $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4}$. What leads to crystal-field splitting in these complex ions? Given that CN^{-}is a strong-field ligand and Cl^{-}is a weak-field ligand, sketch the orbital-energy level diagram for each ion. How many unpaired electrons are in each ion?

Crystal field splitting is a separation in energy of the d orbitals due to a repulsive interaction of the ligand electrons and the d-orbitals. Orbitals with electron density along the axis of approach of the ligands are raised in energy because of this repulsion. The magnitude of this separation depends on the identity of the ligand.

In both complexes, Mn is in the +2 oxidation state, with e^{-}configuration of $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$. So we have 5 d-electrons to work with,

$$
\begin{array}{cc}
{\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}} & {\left[\mathrm{MnCl}_{6}\right]^{4^{-}}} \\
\text {(large } \Delta \text {, low spin) } & \text { (small } \Delta, \text { high spin) }
\end{array}
$$

So, the cyanide complex has one unpaired electron, while the chloride complex has five.
12. Briefly compare and contrast each of the terms in the following pairs:
a. weak-field ligand vs. strong field ligand

Weak-field ligands have a small influence on the difference in energy between metal dorbitals in a complex, while strong-field ligands have a larger influence and tend to lead to complexes where the is greater crystal-field splitting. Complexes with weak-field ligands generally half-fill all of the d-orbitals first before pairing electrons, while complexes with strong-field ligands fill the lower energy d-orbitals completely first.

NOTE: Ligands to not "have" a strong or weak field! Whether a complex is paramagnetic or diamagnetic depends on the number of d-electrons, the geometry of the complex, and the ligand-field splitting, not only on the ligand!
b. low-spin complex vs. high-spin complex

This is a result of the size of the crystal-field splitting. If Δ is large enough (strong field), electrons will tend to completely fill the lower energy d-orbitals first, maximizing the number of paired electrons (low-spin). If Δ is small enough (weak-field), all of the d orbitals can be half-filled, maximizing the number of unpaired electrons (high-spin).

NOTE: Ligands do not have high or low spin, the magnitude of the crystal field splitting is influenced by the ligands. This splitting determines the number of unpaired electrons and whether the complex is high or low spin,

Possibly Useful Information

$R=8.31441 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	${ }^{\circ} \mathrm{C}=\mathrm{K}-273.15$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$	$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}-\mathrm{RTInQ}$
$\Delta \mathrm{G}^{\circ}=-\mathrm{nFE} \mathrm{E}^{\circ}=-\mathrm{RTInK}$	$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}=1} 1.00 \times 10^{-14}$
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$	$\mathrm{pi}=3.14159$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { conjugatebase }]}{[\text { weakacid }]}\right)$	$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{E}=\mathrm{E}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{Q}$	$\mathrm{E}=\mathrm{E}^{\circ}-\frac{0.0591}{\mathrm{n}} \log \mathrm{Q}$ at $25^{\circ} \mathrm{C}$
$1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$	$\mathrm{F}=96485 \mathrm{C} / \mathrm{mol} \mathrm{e}$

Weak Field $\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \approx \mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}$Strong Field

1																	18
1A																	8A
$\begin{aligned} & 1 \\ & \mathbf{H} \end{aligned}$	2											13				17	$\stackrel{2}{\mathrm{He}}$
1.00794	2A											3A	4A	5A	6 A	7A	4.00260
3	4											5	6	7	8	9	10
Li	Be											B	C	N	O	F	Ne
6.941	9.01218											10.811	12.011	14.0067	15.9994	18.9984	20.1797
11	12	3	4	5		7	8	9	10	11	12	13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.3050	3B	4B	5B	6B	7B		8B		1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.757	127.60	126.904	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	${ }^{*} \mathrm{La}$	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	${ }^{\text {TA }} \mathrm{Ac}$	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							

*Lanthanide series	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.115 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.908 \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 150.36 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.965 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.925 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.930 \end{gathered}$	$\begin{gathered} \hline 68 \\ \mathrm{Er} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \operatorname{Tm} \\ 168.934 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 174.967 \end{gathered}$
${ }^{\dagger}$ Actinide series	$\begin{gathered} 90 \\ \text { Th } \\ 232.038 \end{gathered}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.036 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.029 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p}_{237.048} \end{gathered}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \\ & (244) \end{aligned}$	$\begin{aligned} & \hline 95 \\ & \mathrm{Am} \\ & (243) \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \\ & (247) \end{aligned}$	$\begin{gathered} \hline 97 \\ \text { Bk } \\ (247) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ \text { (251) } \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ \text { (252) } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \\ & (258) \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & \text { (259) } \end{aligned}$	$\begin{gathered} 103 \\ \mathrm{Lr} \\ (262) \end{gathered}$

Copyright © 2007 Pearson Prentice Hall, Inc.

