Chem 131 Exam 3, Ch 13, 16, 17, Thermo. 100 Points

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. A solution of sucrose (table sugar, a nonvolatile, non-dissociating solute) in water has a boiling point of 105°C. What would the boiling point be of a NaCl solution of the same concentration?
 - a. 100°C
 - b. 105°C
 - c. 110°C
 - d. 102.5°C
 - e. not enough information to tell.
- 2. The acids $HC_2H_3O_2$ and HF are both weak but HF is a stronger acid than $HC_2H_3O_2$. HCl is a strong acid. Order the following according to base strength.
 - a. $C_2H_3O_2^- > F^- > CI^- > H_2O$
 - b. $CI^- > F^- > 2H_3O_2^- > H_2O$
 - c. $F^- > C_2 H_3 O_2^- > H_2 O > C I^-$
 - d. $C_2H_3O_2^- > F^- > H_2O > CI^-$
 - e. none of these

Part I: Complete all of problems 3-7

- 3. Define <u>three</u> of the following in a maximum of three sentences per item: (12 points)
 - a. buffer capacity:
 - b. weak Brönsted base:
 - c. mole fraction:
 - d. vapor pressure:

Answer _____

Answer _____

Name_____ March 30, 2012 Solid ammonium nitrate decomposes exothermically to dintrogen oxide gas and liquid water. What is the ΔG° for the reaction at 298K? Is the reaction more spontaneous or less spontaneous at high temperatures? How do you know? (12 pts)

Species	∆G° _f (kJ/mol)	∆H ^o f (kJ/mol)	S° _f (J/mol)
NH4NO3 (<i>s</i>)	-183.9	-365.6	151.1
N ₂ O (g)	+104.2	+82.05	219.9
H ₂ O (<i>l</i>)	-237.1	-285.8	69.91

5. Calculate the vapor pressure at 25° C of a solution containing 165 g of the nonvolatile solute, glucose (C₆H₁₂O₆), in 685 g water. The vapor pressure of water at 25° C is 23.8 mm Hg. (12 pts)

- 6. A handbook lists various procedures for preparing buffer solutions. To obtain pH 9.50, the handbook says to mix 64.00 mL 0.200 M ammonia with 36.00 mL of 0.200 M NH₄Cl. The K_a for ammonium is 5.6×10^{-10} .
 - a. Show with a calculation that the expected pH of the resulting solution is 9.50. (8 pts)

b. What would be pH be if 100 mL solution prepared using the recipe above were diluted to 1.00 L? (6 pts)

- 7. Benzoic acid is a weak, monoprotic acid, often used as a food preservative. Consider a solution prepared by dissolving 0.200 moles of benzoic acid, $HC_7H_6O_2$ (or HA), in 0.500 L of solution. $K_a = 6.28 \times 10^{-5}$.
 - a. What is the pH of this solution? (8 pts)

b. What is the pH of a solution prepared by mixing 50.00 mL of the benzoic acid solution above with 15.00 mL of 0.300 M NaOH? (8 pts)

Part II. Answer two (2) of problems 8-11. Clearly mark the problem you do not want graded. 14 points each.

8. Explain why alcohols like methanol (CH₃OH) and ethanol (CH₃CH₂OH) are very soluble in water, while octadecanol (CH₃(CH₂)₁₇OH) is not.

9. What is the pH of a 0.15 M solution of sulfurous acid (H_2SO_3 , $pK_{a1} = 1.82$, $pK_{a2} = 7.00$)?

10. You are given 250.0 mL of a 0.100 M propionic acid solution (HP, $K_a = 1.35 \times 10^{-5}$). What volume of 1.00 M sodium propionate (NaP) would you add to raise the pH to 4.00?

11. A forensic chemist is given a white solid that is expected of being pure cocaine (C₁₇H₂₁NO₄, 303.36 g/mol). She dissolves 1.22 g of the solid in 15.60 g of benzene and determines that the freezing point is lowered by 1.32°C. Assuming a 1% uncertainty in her measurements, can the chemist state that the substance is likely to be cocaine?

Possibly Useful Information

R = 8.31441 J mol ⁻¹ K ⁻¹	°C = K – 273.15	R = 0.0821 L atm mol ⁻¹ K ⁻¹
$\Delta t_{fp} = k_{fp}m$	$\Delta t_{bp} = k_{bp}m$	$\Pi = MRT$
$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -RTInK$	$\Delta G = \Delta G^{\circ} - RTInQ$	$P_{soln} = X_{solvent} P^{o}_{solvent}$
$pH = pK_a + log\left(\frac{[conjugatebase]}{[weak acid]}\right)$	pH + pOH = 14	$K_a K_b = K_{w} = 1.00 \times 10^{-14}$
1 atm = 760 mm Hg	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	

Selected Constants

Solvent	Boiling Point (°C)	K₀ (°C kg/mol)	Freezing Point (°C)	K _f (°C kg/mol)
Water	100.0	0.51	0	1.86
Benzene	80.1	2.53	5.5	5.12
Ethyl Ether	34.5	2.02	-116.2	1.79
Chloroform	61.2	3.63	-63.5	4.70

1																	18
_1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88,9059	40 Zr 91.224	41 Nb 92,9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126,904	54 Xe 131.29
55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
132.905 87	137.327 88	138.906 89	178.49 104	180.948 105	183.84 106	186.207 107	190.23 108	192.22 109	195.08 110	196.967 111	200.59	204.383	207.2	208.980	(209)	(210)	(222)
Fr (223)	Ra 226.025	[†] Ac 227.028	Rf (261)	Db (262)	Sg (266)	Bh (264)	Hs (277)	Mt (268)	Ds (271)	Rg (272)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2007 Pearson Prentice Hall, Inc.