CHEM 131 Quiz 2 – September 4, 2019

Name _____

Complete the following problems. Write your final answers in the blanks provided. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

1. Complete the table below. For each orbital indicate the number of radial and angular nodes. (10 pts)

Orbital	3р	3d						
Sketch	Any orientation is fine $\int_{x}^{z} \int_{y}^{z} \int_{y}^{z} \int_{z}^{z} $	Any of these is fine $ \begin{array}{c} & & & \\ $						
n	3	3						
l	1	2						
Number of Radial Nodes	1	0						
Number of Angular Nodes	1	2						

2. Draw below and orbital energy level diagram for phosphorous. Fill the orbitals with electrons following the aufbau principle and Hund's rule. How many unpaired electrons does phosphorous have? (7 points)

There are three unpaired electrons

- 3. Write the spectroscopic notation for the electron configuration for each of the following species. (8 points)
 - a. silicon

14 electrons: $1s^22s^22p^63s^23p^2$ or [Ne] $3s^23p^2$

b. cerium

```
58 electrons: 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^2 or [Xe]6s^24f^2
```

c. sulfide ion

```
18 electrons: 1s^22s^22p^63s^23p^6 or [Ar]
```

d. iron (III) ion

23 electrons: $1s^22s^22p^63s^23p^63d^5$ or [Ar] $3d^5$ (remember, larger n tends to be lost 1^{st})

Bonus: Complete the table below: (2 pts each)

Compound Name	Formula					
copper (I) sulfate	Cu_2SO_4					
iron (II) phosphate	$Fe_3(PO_4)_2$					

IA																	VIIIA
1	Beriodic Table of the Elements												8A				
H	2					I CII	Juic	abic		LICH	ients	12	14	15	16	17	He
Hydrogen	IA											ША	IVA	VA	VIA	VIIA	Helium
1.008	2A	1										3A	4A	5A	6A	7A	4.003
3	4											5	6	7	* ~	9	10
LI	Ве											В	C	N	0	F	Ne
Lithium 6.941	9.012											Boron 10.811	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998	Neon 20.180
11	12	ĺ										13	14	15	16	17	18
Na	Ma	3	4	5	6	7	8	9	10	11	12		Si	P	S	C	Ar
Sodium	Magnesium	ШВ	IVB	VB	VIB	VIIB		— иш —		IB	IIB	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	24.505	3B 21	4B	5B	6B 24	7B 25	26	27	28	1B 29	30	31	32	30.974	32.000	35.455	39.940
ĸ	Ca	Sc	Ті	ĨV	Cr	Mn	Ēρ	"Co	Ni		7n	Ga	Go	Δc	So	Br	[°] Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.631	74.922	78.971	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	IC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	le	1	Xe
Rubidium 85.468	Strontium 87.62	Yttrium 88.906	Zirconium 91.224	Niobium 92.906	Molybdenum 95.95	Technetium 98.907	Ruthenium 101.07	Rhodium 102.906	Palladium 106.42	Silver 107.868	Cadmium 112.414	Indium 114.818	Tin 118.711	Antimony 121.760	Tellurium 127.6	Iodine 126.904	Xenon 131.294
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87	88	89-103	104	100.948	105.04	107	108	109	110	1111	112	113	114	115	116	117	118
Fr	Ra	05 105	Rf	Dh	Sa	Bh	He	M+	De	Ra	Cn	Nh	FI	Mc	1v	Te	Öa
Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
223.020	226.025		[261]	[262]	[266]	[264]	[269]	[278]	[281]	[280]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
		57	59	50	60	61	62	62	64	65	66	67	69	60	70	71	
	Lanth	anide	a "(ີດ 👘	Dr N	IA D	m [©] C	m ["] E	: ľ°	: ส	гь 🖺	ייר "ו	ا " م	5r " T	'm /″`\	/h ∬i	
	Ser	ies Lant		JE Prase	odymium Neor		ethium Sam	arium Fun	opium Gade		rhium Dv			hium Th	ulium Ytt	erbium lu	tetium
		13	8.905 14	0.116 14	0.908 14	1.243 144	.913 15	0.36 15	1.964 15	7.25 19	58.925 1	62.500 1	64.930 16	7.259 16	8.934 17	3.055 1	74.967
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	Acti	ies A	Ac T	h I	Pa∣ I	JNN	ip P	'u∣A	m C	m E	3k	Cf	Es F	m N	/Id ∣ N	0	Lr
	561	Act 22	tinium The	2.038 Prot	actinium Ura	nium Nept	unium Plut	onium Ame	ericium Cu 3.061 24	rium Bei 7.070 24	rkelium Ca	ifornium Ein: 51.080	teinium Fei	mium Meno	delevium No	belium Law	rencium [262]
																0.20	17 Todd Helmeortine
																	sciencenotes.org