| CHEM 131 | Name | | |-----------------|------|--| | O 4 D C 27 2010 | | | ## Quiz 4 – Due in class September 27, 2019 Complete the following problems. Write your final answers in the blanks provided. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units. ## Rules for this take-home quiz. ## DO NOT OPEN THE QUIZ UNTIL YOU ARE READY TO TAKE IT! - You may allocate a maximum of <u>50 continuous minutes</u> for this quiz, split in to two 25-minute segments. - For the first 25-minute segment, you will take the quiz using only the materials on these pages, a calculator and a **pencil**. Treat this time as though you were taking the quiz in the classroom. You may not use your book, notes, electronic sources or anyone else to help. Record the start and end of the first 25 minutes below. - For the second 25 minutes, you may use your book, notes or electronic resources to make any corrections to your work. **Make these corrections in blue or red pen.** You **MAY NOT** ask anyone else for help. Record the end of the second 25 minute block below. - Once you have completed the quiz, sign below to affirm that the quiz was taken following the rules above. This signature is your pledge that the quiz was completed in an ethical manner! | Start time: | End of 1 st 25 minutes: | End of 2 nd 25 minutes: | | |-------------|------------------------------------|------------------------------------|--| | | | | | | Signature | | Date | | ## **Possibly Useful Information** $\Delta H^{o} = \Sigma(Bond Energy for bonds broken) - \Sigma(Bond energy for bonds formed)$ | 1A | | Periodic Table of the Elements | | | | | | | | | | | | | | | | |-------------------------|--------------------------------------|--------------------------------|---|-----------------------------|-------------------------------|--------------------------------|------------------------------|--------------------------------|---------------------------------|--------------------------------------|---------------------------|---------------------------|----------------------------|------------------------------|-----------------------------------|-------------------------------|--------------------------| | lydrogen
1.008 | IIA
2A | | IIIA IVA VA VIA VIIA HE
3A 4A 5A 6A 7A 4 | | | | | | | | | | | | Heliu
4.00 | | | | Li
Lithium
6.941 | Be
Beryllium
9.012 | | | | | | | | | | | 5
B
Boron
10.811 | 6
C
Carbon
12.011 | 7
N
Nitrogen
14.007 | 8
Oxygen
15.999 | Fluorine | 10
Neo
20.18 | | Na
Sodium
22.990 | Mg
Magnesium
24.305 | 3
IIIB
3B | 4
IVB
4B | 5
VB
5B | 6
VIB
6B | 7
VIIB
7B | 8 | — vⅢ — | 10 | 11
IB
1B | 12
IIB
2B | Al
Aluminum
26.982 | Si
Silicon
28.086 | Phosphorus
30.974 | 16
S
Sulfur
32.066 | Cl
Chlorine
35.453 | 18
A
Argo
39.94 | | K
otassium
39.098 | Ca
Calcium
40.078 | SC
Scandium
44.956 | Ti
Titanium
47.867 | Vanadium 50.942 | Cr
Chromium
51.996 | Mn
Manganese
54.938 | Fe
Iron
55.845 | 27
Co
Cobalt
58.933 | 28
Ni
Nickel
58.693 | Cu
Copper
63.546 | 30
Zn
Zinc
65.38 | Ga
Gallium
69.723 | Ge
Germanium
72.631 | AS
Arsenic
74.922 | Se
Selenium
78.971 | Br
Br
Bromine
79.904 | 36
K
Krypt
83.7 | | Rb | Sr
Strontium
87.62 | Y
Yttrium
88.906 | Zr
Zirconium
91.224 | Nb
Niobium
92.906 | Mo
Molybdenum
95.95 | TC Technetium 98.907 | Ru
Ruthenium
101.07 | Rh
Rhodium
102.906 | Pd
Palladium
106.42 | 47
Ag
Silver
107.868 | Cd
Cadmium
112.414 | In
Indium
114.818 | 50
Sn
Tin
118.711 | Sb
Antimony
121.760 | Te
Tellurium | 53
I
Iodine
126.904 | 54
X
Xen
131. | | Cs
Cesium
132.905 | 56
Ba
Barium
137.328 | 57-71 | 72
Hf
Hafnium
178.49 | Ta
Tantalum
180.948 | 74
W
Tungsten
183.84 | 75
Re
Rhenium
186.207 | 76
Os
Osmium
190.23 | 77
Ir
Iridium
192.217 | 78
Pt
Platinum
195.085 | 79
Au
Gold
196.967 | Hg
Mercury
200.592 | Thallium 204.383 | Pb Lead 207.2 | Bi
Bismuth
208.980 | 84
Po
Polonium
[208.982] | Astatine 209.987 | 86
R
Rad
222 | | Fr | Radium 226.025 | 89-103 | 104
Rf
Rutherfordium | 105
Db
Dubnium | Sg
Seaborgium | Bh
Bohrium | 108
Hs
Hassium | 109 Mt Meitnerium [278] | DS Darmstadtium [281] | Rg
Roentgenium | Cn
Copernicium | Nh
Nihonium | 114
Flerovium
[289] | MC
Moscovium
[289] | LV Livermorium [293] | TS Tennessine [294] | 118
Ogane | | | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |----------------------|----------------------|--------------------|-------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|--------------------|----------------------|----------------------|---------------------| | Lanthanide
Series | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | Lu | | Series | Lanthanum
138.905 | Cerium
140.116 | Praseodymium
140.908 | Neodymium
144.243 | Promethium
144.913 | Samarium
150.36 | Europium
151.964 | Gadolinium
157.25 | Terbium
158.925 | Dysprosium
162.500 | Holmium
164.930 | Erbium
167.259 | Thulium
168.934 | Ytterbium
173.055 | Lutetium
174.967 | | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | Actinide
Series | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | │ Lr │ | | Series | Actinium
227.028 | Thorium
232.038 | Protactinium
231.036 | Uranium
238.029 | Neptunium
237.048 | Plutonium
244.064 | Americium
243.061 | Curium
247.070 | Berkelium
247.070 | Californium
251.080 | Einsteinium
[254] | Fermium
257.095 | Mendelevium
258.1 | Nobelium
259.101 | Lawrencium
[262] | 2017 Todd Helmenstine sciencenotes.org 1. Choose <u>two (2)</u> of the compounds below and draw Lewis Structures for the compound, indicate the hybridization of the central atom and estimate all bond angles. (8 points each) | | I : C. | # of sigma | # of pi | Hybridization | Is the | |-------------------|-------------------------------|--------------|--------------|---------------|----------| | Compound | Lewis Structure | bonds in the | bonds in the | on central | molecule | | _ | Include estimated bond angles | structure | structure | atom | polar? | | CH ₂ O | | | | | | | NH ₃ | | | | | | | CO ₂ | | | | | | 2. Using the information below, determine the ΔH^{o} for the reaction: (9 points) $$CO(g) + 3 H_2(g) \rightarrow CH_4(g) + H_2O(g)$$ | Bond | C-O | C=O | C≡O | С-Н | Н-Н | О-Н | O-O | O=O | |----------------------|-----|-----|------|-----|-----|-----|-----|-----| | Bond Energy (kJ/mol) | 360 | 736 | 1072 | 414 | 436 | 464 | 142 | 498 |