Chem 131	Name
Exam 1, Ch 8-10.6	September 11, 2019
100 Points	

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. How many unpaired electrons are present in an oxygen atom?
 - a. 0 b. 1 c. 2 d. 3
- 2. Which of the following photons has the **highest** energy?
 - a. $v = 7.5 \times 10^{14} \text{ s}^{-1}$ b. $\lambda = 560 \text{ nm}$ c. $\lambda = 242 \text{ nm}$ d. $v = 3.3 \times 10^{14} \text{ s}^{-1}$ Answer
- 3. Arrange the following in terms of increasing electron affinity: K, F, P, O
 - a. K<F<P<O
 - b. K<P<O<F
 - c. F<O<P<Kd. P<K<O<F
- 4. Which of the following orbitals <u>cannot exist</u> according to modern quantum theory: 2s, 3p, 2d, 3f, 5p, 6p? Briefly justify your reasoning.

Answer _____

5. We can write resonance structures for ozone as shown below. What does the "↔" mean? Why do we sometimes need to invoke resonance?

Part I: Complete all of problems 6-9

6. Calculate the wavelength, in nanometers, of a photon emitted when an electron in a hydrogen atom undergoes a transition from n = 5 to n = 2. (10 points)

Answer_____

7. Write the ground state electron configurations for the following species. You may choose to use noble gas notation if you wish. Are all of the electrons in the valence shell of each atom paired? (12 points total, 4 points each)

a. selenium

b. silicon

c. nickel (II) ion

8. Each drawing represents a type of an atomic orbital. Give the letter designation of the orbital, its value of ℓ , and specify the number of angular nodes (nodal surfaces). Also provide the minimum necessary value of n for an orbital of each type to exist. (12 points)

orbital diagram		
ℓ value		
letter designation		
# of angular nodes		
minimum value of n for this orbital type		

9. Chromium is one of the transition elements that does not follow the predicted trend for filling orbitals (the aufbau principle). Use spectroscopic notation to show (1) the predicted electron configuration following our "standard" trend and (2) predict the actual electron configuration. In 2-3 sentences, explain why the actual configuration is more stable. (10 points)

Configuration following aufbau principle:_____

Actual electron configuration:_____

Part II. Answer three (3) of problems 10-13. Clearly mark the problem you do not want graded. 12 points each.

10. Answer the following in no more than four sentences each:

a. Explain the trend in atom/ion size: $O^{2-} > F^- > Ne > Na^+ > Mg^{2+}$

b. Consider the plot to the right, that shows the trend in atomic radius moving from potassium (atomic number 19) to bromine (atomic number 35). Why is there a decrease in size as you move from left to right across the plot? Why is the decrease much more shallow across the transition metals?

11. Complete the table **for three (3)** of the species below, indicating resonances structures, if necessary. If more than one structure is possible, indicate the structure you expect to be most representative of the actual structure of the species.

Species	Lewis Structure	Species	Lewis Structure
OCl2		NO ₂ ¯	
HCN		CH ₂ O	

12. The Lewis structure for nitrous oxide could be drawn in several ways, four of which are shown below. Each of these structures utilize all of the valence electrons and all atoms have filled octets. Which one of these structures is most likely to be representative of the real structure of nitrous oxide? Justify your answer.

$$\ddot{N}=N=\ddot{O}$$
 or $\ddot{N}=O=\ddot{N}$ or $N=N=\ddot{O}$. Or $N=O-\ddot{N}$:

13. Consider the following diagrams of the same orbital. Which orbital do the pictures represent? Provide the values for n, ℓ , and m_{ℓ} for the orbital and *justify your reasoning*.

90% Probability Density Plot (dark = high probablility)

$h = 6.626 \text{ x } 10^{-34} \text{ J s}$	$c = 2.998 \text{ x } 10^8 \text{ ms}^{-1}$	$E = hv = \frac{hc}{\lambda}$	$\Delta E \bullet \Delta(mv) > h$
$R_{\rm H} = 2.179 \text{ x } 10^{-18} \text{ J/atom}$	$E = -\frac{R_H}{n^2}$	$\Delta E = R_{\rm H} \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right)$	$H\psi = E\psi$

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 14						d	hind	ic Ta	h a d	f the	Elen.	Jents							8A 2
VieweeUA3143143144144144144144144 <th>I</th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th>13</th> <th>4</th> <th>4</th> <th>15</th> <th>16</th> <th>17</th> <th>He</th>	I	2					-		2					13	4	4	15	16	17	He
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hydrogen 1.008	NA A												EIIA 2A	5.5	4	VA 50	VIA	VIIA	Helium 4.003
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4												5	9	-	8	5	6	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Be												8			z	0	ш	Ne
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lithium 6.941	Beryllium 9.012												Borol 10.81	1 Cart	nod 111	litrogen 14.007	Oxygen 15.999	Fluorine 18.998	Neon 20.180
	1	12												13	4	15		16	17	18
	Na	Ma	e	4	5	9	7		80	6	10	1	12	4	<u> </u>	:=	٩	S	υ	Ar
	Sodium 22.990	Magnesium 24.305	IIIB 3B	IVB 4B	VB 5B	VIB 6B	IN	8	C	- M	\int	18 18	11B 2.B	Alumin 26.98	um Silic 28.0	286 Ph	osphorus 30.974	Sulfur 32.066	Chlorine 35.453	Argon 39.948
	19	20	21	22	23	24	25	26	27		28	29	30	31	32	33	m	34	35	36
Training	¥	S	Š	F	>	Շ	Σ	-	e	ů	Ż	S	Zn	Ŭ	ש	e	As	Se	B	z
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Potassium 39.098	Calcium 40.078	Scandium 44.956	Titanium 47.867	Vanadium 50.942	Chromiur 51.996	m Manga	ase 5.	Iron 5.845	Cobalt 58.933	Nickel 58.693	Copper 63.546	Zinc 65.38	Galliu 69.72	m Germi 3 72.6	anium 531	Arsenic 74.922	Selenium 78.971	Bromine 79.904	Krypton 83.798
Rb stationSrYZrNb stationMoTcRuRh stationMdMdMdMoTcRuRh stationMd<	37	38	39	40	41	42	43	4	45		46	47	48	49	20	51		22	53	54
	Rb	S,	>	Zr	qN	Σ	F	L L	۲n	Rh	Pd	Aa	PU	I	S	2	Sb	Ч Ч	-	Xe
	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybden	Im Techne	tium Rut	henium	Rhodium	Palladium	Silver	Cadmium	Indiu) ⁼ {	A e	ntimony	Tellurium	Iodine	Xenon
	85.468	81.62	88.906	91.224	92:906	56.66	98.9		01.07	102.906	106.42	107.868	112.414	114.8	8		121./60	97/21	126.904	131.294
	22	26	57-71	22	2	74	12	16	-	,	18	- 19	8	آ	82		i	4 1	85	88
	S	Ba		Ŧ	a	>	Ž	ں م	S	5	ł	Au	D E			۵	B	2	¥	Å
878889-103104105105105107108103110111113114115116117113Faroun Radum 23300Radim RadumDeniun DaninSeborgun (261)BhHSMtDSRG100110111113114115116117118Faroun Radum Radum RadumDeniun (261)Seborgun (261)DSBhHSMtDSRG100110111113114115116117118Faroun Salous LanthanideDisplay (261)DSBhHSMtDS100110110114	Cesium 132.905	Barium 137.328		Hafnium 178.49	Tantalum 180.948	Tungster 183.84	186.2	ium 05	smium 90.23	Iridium 192.217	Platinum 195.085	Gold 196.967	Mercury 200.592	Thalliu 204.36	m 33 Let 207	ad 52	3ismuth 208.980	Polonium [208.982]	Astatine 209.987	Radon 222.018
FrRaRfDbSgBhHsMtDsRgCnNhFIMcLvTsQcFarcturRodiunCarlinCar	87	88	89-103	104	105	106	107	108	10	6	110	111	112	113	114	115	-	116	117	118
FranctionReduitionReduitionReduitionReduitionReduitionRecontianNontianRecontian	Ļ	Ra		Ł	рр	Sa	8	+ ع	ł	Ę	õ	Ra	С С	Z	<u>لل</u>		ğ	2	Ł	õ
Lanthanide Series57 Series58 Series59 Lanthanide60 Lanthanide61 Lanthanide66 Lanthanide66 Lanthanide66 Lanthanide66 Lanthanide66 Lanthanide66 Lanthanide66 Lanthanide66 Lanthanide70 Lanthanide70 Lanthanide71 LanthanideLanthanide assessLanthanide LanthanideCevium LanthanidePameltium LanthanideSamatium LanthanideEuro (Gd LanthanideTh Samatiun Lanthanide66 Lanthanide66 Lanthanide70 Lanthanide71 Lunthanide70 Lunthanide71 Lunthanide70 Lunthanide71 Lunthanide71 Lunthanide71 Lunthanide70 Lunthanide71 Lunthanide71 Lunthanide71 Lunthanide70 Lunthanide71 Lunthanide7	Francium 223.020	Radium 226.025		Rutherfordium [261]	Dubnium [262]	Seaborgiu [266]	m Bohri [26/	d) Ha	sssium N 269]	Aeitnerium [278]	Darmstadtium [281]	Roentgenium [280]	Coperniciur [285]	n Nihoni [286]	um Flero	vium Mc 39]	oscovium [289]	Livermorium [293]	Tennessine [294]	Oganesso [294]
Actinitie 37 38 99 00 01 02 03 04 05			1								[
Series Lanthaum Cerum Preservenum Revenum Revenum Revenum Revenum Lanthaum Ervine Departure Lanthaum Ervine Lanthaum <thlanthaum< th=""> Lanthaum Lanthaum</thlanthaum<>		Lantha	57 nide	ي ع	<u>ہ</u>	<mark>م</mark> ا	PZ	Pm ¹	Sm ⁶²	E 8	4 6	ام م	Lb "	2	HO	°°	e Tu	°_	ہ۔ ہ	n
Actinide Series 90 Actinide 91 BC 93 BC 94 BC 95 BC 96 BC 97 BC 98 BC 99 BC 100 BC 101 BC 102 BC 103 BC 1		Ser	Lant 13	hanum Ce 8.905 140	Prase	odymium N 0.908	leodymium 144.243	Promethium 144.913	Samariun 150.36	n Europi 151.9	ium Gado 64 15	7.25 15	erbium Dy	rsprosium 162.500	Holmium 164.930	Erbium 167.259	Thuliu 168.93	5 T	arbium Lu	tetium 74.967
Actinide AC Th Pa U Np Pu Am Cm BK Cf ES FM Md No Latin Vanium Putanium Americium Eurium BK Cf ES FM Md No Lr 227.028 232.038 233.036 233.036 233.048 24.064 24.064 24.064 24.064 24.070 247.070 247.070 251.080 231.080 231.080 231.080 231.080 124.011 (248)			88	60	91	92		93	94	95	96	97	98	5	6	100	101	102	103	
Actinium Thorium Protactinium Uranium Putonium Putonium Americium Curium Berkelium Californium Einsteinum Fermium Mendelevium Nobelium Lawrencium 237,035 238,101 (262) (254) 237,035 258,101 (262)		Actin Seri	es L	- V	۔ ج	a	⊃	dZ	Pu	Ā	ט ד	2	¥	უ	Es	E	Š	δ	9	Ľ
			Act 22	tinium The 7.028 232	2.038 Prote	actinium 11.036	Uranium 238.029	Neptunium 237.048	Plutoniur 244.064	n Americ 243.0	61 Cu 54	rium Be 7.070 24	rkelium Ca	alifornium 251.080	Einsteinium [254]	Fermium 257.095	Mendele 258.1	vium No	9.101 Lav	rrencium [262]

8