Chem 131
 Exam 1, Ch 8-10.6
 100 Points

Name
September 11, 2019

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

1. How many unpaired electrons are present in an oxygen atom?
a. 0
b. 1
c. 2
d. 3

Answer \qquad
2. Which of the following photons has the highest energy?
a. $\quad v=7.5 \times 10^{14} \mathrm{~s}^{-1}$
b. $\lambda=560 \mathrm{~nm}$
c. $\lambda=242 \mathrm{~nm}$

Answer \qquad
d. $v=3.3 \times 10^{14} \mathrm{~s}^{-1}$
3. Arrange the following in terms of increasing electron affinity: $\mathrm{K}, \mathrm{F}, \mathrm{P}, \mathrm{O}$
a. $\mathrm{K}<\mathrm{F}<\mathrm{P}<\mathrm{O}$
b. $\mathrm{K}<\mathrm{P}<\mathrm{O}<\mathrm{F}$
c. $\mathrm{F}<\mathrm{O}<\mathrm{P}<\mathrm{K}$

Answer \qquad
d. $\mathrm{P}<\mathrm{K}<\mathrm{O}<\mathrm{F}$
4. Which of the following orbitals cannot exist according to modern quantum theory: $2 \mathrm{~s}, 3 \mathrm{p}, 2 \mathrm{~d}, 3 \mathrm{f}, 5 \mathrm{p}$, $6 p$? Briefly justify your reasoning.
5. We can write resonance structures for ozone as shown below. What does the " \leftrightarrow " mean? Why do we sometimes need to invoke resonance?

Part I: Complete all of problems 6-9

6. Calculate the wavelength, in nanometers, of a photon emitted when an electron in a hydrogen atom undergoes a transition from $\mathrm{n}=5$ to $\mathrm{n}=2$. (10 points)

Answer

7. Write the ground state electron configurations for the following species. You may choose to use noble gas notation if you wish. Are all of the electrons in the valence shell of each atom paired? (12 points total, 4 points each)
a. selenium
b. silicon
c. nickel (II) ion
8. Each drawing represents a type of an atomic orbital. Give the letter designation of the orbital, its value of ℓ, and specify the number of angular nodes (nodal surfaces). Also provide the minimum necessary value of n for an orbital of each type to exist. (12 points)

orbital diagram			
ℓ value			
letter designation			
\# of angular nodes			
minimum value of \mathbf{n} for this orbital type			

9. Chromium is one of the transition elements that does not follow the predicted trend for filling orbitals (the aufbau principle). Use spectroscopic notation to show (1) the predicted electron configuration following our "standard" trend and (2) predict the actual electron configuration. In 2-3 sentences, explain why the actual configuration is more stable. (10 points)

Configuration following aufbau principle: \qquad
Actual electron configuration: \qquad

Part II. Answer three (3) of problems 10-13. Clearly mark the problem you do not want graded. 12 points each.
10. Answer the following in no more than four sentences each:
a. Explain the trend in atom/ion size: $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Ne}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}$
b. Consider the plot to the right, that shows the trend in atomic radius moving from potassium (atomic number 19) to bromine (atomic number 35). Why is there a decrease in size as you move from left to right across the plot? Why is the decrease much more shallow across the transition metals?

11. Complete the table for three (3) of the species below, indicating resonances structures, if necessary. If more than one structure is possible, indicate the structure you expect to be most representative of the actual structure of the species.

Species	Lewis Structure	Species	Lewis Structure
$\mathbf{O C l}_{\mathbf{2}}$			

12. The Lewis structure for nitrous oxide could be drawn in several ways, four of which are shown below. Each of these structures utilize all of the valence electrons and all atoms have filled octets. Which one of these structures is most likely to be representative of the real structure of nitrous oxide? Justify your answer.

OR

OR

OR

13. Consider the following diagrams of the same orbital. Which orbital do the pictures represent? Provide the values for n, ℓ, and m_{ℓ} for the orbital and justify your reasoning.

$\mathbf{9 0 \%}$ Probability Density Plot
(dark = high probablility)

Possibly Useful Information

$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	$\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$	$\mathrm{E}=\mathrm{h} v=\frac{\mathrm{hc}}{\lambda}$	$\Delta \mathrm{E} \cdot \Delta(\mathrm{mv})>\mathrm{h}$
$\mathrm{R}_{\mathrm{H}}=2.179 \times 10^{-18} \mathrm{~J} / \mathrm{atom}$	$\mathrm{E}=-\frac{\mathrm{R}_{\mathrm{H}}}{\mathrm{n}^{2}}$	$\Delta \mathrm{E}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right)$	$\mathrm{H} \psi=\mathrm{E} \psi$

