Chem 130 Exam 4, Ch 15, with parts of 10 and 14 100 Points

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 3 points each

- 1. The steady-state approximation is most useful when
 - a. the equilibrium constant for a reaction is small.
 - b. there is no clear slow step in a proposed reaction mechanism.
 - c. a reaction occurs through a single-step mechanism.
 - d. the concentration of reactants is small compared to the equilibrium constant.
- 2. The pressure of a reaction vessel that contains an equilibrium mixture in the reaction $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ is increased. When equilibrium is reestablished:
 - a. the amount of Cl_2 will have increased.
 - b. the amount of SO_2 will have decreased.
 - c. the amounts of SO_2 and Cl_2 will have remained the same.
 - d. the amounts of all SO₂, Cl₂, and SO₂Cl₂ will have decreased..
- 3. Consider the reaction coordinate diagram below. From the diagram, we can conclude:

Energy

Reaction Progress

- The reaction is endothermic. a.
- b. The reaction occurs by a two-step mechanism.

c. The first step of the mechanism is the rate-determining step.

- d. The reaction is nonspontaneous.
- 4. The structure of the carbonate can be described by these three resonance structures. This means that

- a. two CO bonds are single bonds and one is a double bond.
- b. three distinct forms of carbonate exist in equilibrium.
- c. the structure of carbonate cycles between the three forms.
- d. carbonate exists as a single form, which is the average or hybrid of these structures.

Answer _____

Answer ____

Answer

Answer

Name_ **December 5, 2018**

Part I Equilibrium. Answer <u>three (3)</u> of problems 5-8. Clearly mark the problems you do not want graded. 15 points each

5. In the gas phase, iodine reacts with cyclopentane to produce cyclopentadiene and hydrogen iodide. <u>Explain</u> how each of the following affects the amount of HI (g) present in the equilibrium mixture in the reaction below. No calculations are necessary.

$$I_2(g) + C_5 H_8(g) \rightleftharpoons C_5 H_6(g) + 2 HI(g)$$
 $\Delta H^\circ = +92.5 kJ$

- a. raising the temperature of the mixture while keeping the volume constant.
- b. doubling the volume of the container holding the mixture, while keeping the temperature constant.
- c. introducing more $C_5H_6(g)$.
- 6. A mixture consisting of 0.150 mol H₂, 0.150 mol I₂, and 3.00 mol HI is brought to equilibrium at 445°C in a 1.50 L flask. What are the equilibrium concentrations of each species? $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ K_c = 50.2 at 445°C

7. Formamide, used in the manufacture of pharmaceuticals, dyes, and agricultural chemicals, decomposes at high temperatures by the equilibrium below, with $K_c = 4.84$ at 400K. If 0.186 mol of HCONH₂ dissociates at 400K in a 2.16 L vessel, what will be total number of moles of gas present at equilibrium? If the total pressure, $P_t = n_{total}RT/V$, what is the total equilibrium pressure in the vessel? HCONH₂ (g) \rightleftharpoons CO (g) + NH₃

8. Given the K_c equilibrium constant values for the reactions below, determine the value of K_p at 100.0° C for the reaction 2 N₂O (g) + 3 O₂ (g) \rightleftharpoons 2 N₂O₄ (g).

$$\begin{split} N_2 &(g) + \frac{1}{2} O_2 &(g) \rightleftharpoons N_2 O &(g) \\ N_2 O_4 &(g) \rightleftharpoons 2 & N O_2 &(g) \\ \frac{1}{2} N_2 &(g) + O_2 &(g) \rightleftharpoons N O_2 &(g) \\ \end{split} \qquad \begin{array}{l} K_c &= 4.6 \times 10^{-3} \\ K_c &= 4.1 \times 10^{-9} \\ \end{array}$$

Part II. <u>Kinetics and Bonding</u>. Answer <u>three (3)</u> of problems 9-12. Clearly mark the problem you do not want graded. 15 points each.

 Experiment has shown that the rate law for the reaction 2NO(g) + Cl₂(g) → 2NOCl(g) is Rate = k[NO][Cl₂]. One proposed mechanism for this process is shown below, with the second step being rate-determining. Is this a reasonable mechanism for the reaction? Justify your decision.

$$NO + Cl_2 \stackrel{k_1}{\rightleftharpoons} NOCl_2 \text{ (fast)}$$

$$k_{-1}$$

$$k_2$$

$$NOCl_2 + NO \stackrel{k_2}{\rightarrow} 2NOCl \text{ (slow)}$$

10. In our kinetics experiment we used the *isolation method* (sometimes called *pseudo-order* kinetics) to determine the rate law for the reaction of crystal violet with hydroxide ion. Describe how the isolation method allows the determination of the reaction orders for multiple reactants, as well as the overall rate constant for a reaction. You may wish to use the CV reaction as an example. *Hint: how did we "isolate" the impact of CV on the kinetics from that of OH*?

11. Complete the table **for three (3)** of the species below. If more than one structure is possible, indicate the structure you expect to be most representative of the actual structure of the species.

Species	Lewis Structure	Species	Lewis Structure
OCl ₂		N ₂ O	
HCN		CH ₂ O	

12. The Lewis structure for the cyanate ion (a polyatomic anion comprised of one atom each of C, N, and O) could be drawn in several ways, three of which are shown below. Each of these structures utilize all of the valence electrons and all atoms have filled octets. Which one of these structures is most likely to be representative of the real structure of cyanate? Justify your answer.

$$\begin{bmatrix} \ddot{\mathbf{O}} = \mathbf{C} = \ddot{\mathbf{N}} \end{bmatrix}^{-} \qquad \begin{bmatrix} \ddot{\mathbf{O}} = \mathbf{N} = \ddot{\mathbf{C}} \end{bmatrix}^{-} \qquad \begin{bmatrix} \ddot{\mathbf{O}} = \mathbf{C} = \ddot{\mathbf{N}} \end{bmatrix}^{-}$$
OR

This page left blank in case you need more space.

Possibly Useful Information

slope = m = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$R = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$ $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
pV = nRT	$\Delta G = -RTlnK = \Delta H - T\Delta S$	$K_p = K_c(RT)^{\Delta n}$
$k = Ae^{-E_{a/RT}}$	$\ln k = -\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + \ln A$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$

	To save some calculation time, you may round all atomic masses to																
	two (2) decimal points.																
1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 Ho
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 I i	4 Be											5 B	6	7 N	8	9 F	10 Ne
6.941	9.01218											10.811	12.011	14.0067	15.9994	18.9984	20.1797
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 A1	14 Si	15 P	16 S	17 Cl	18 Ar
22.9898	24.3050	3B	4B	5B	6B	7B	/	-8B-		1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 C11	30 Zn	31 Ga	32 Ge	33 A c	34 Se	35 Br	36 Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
37 Rh	38 Sr	39 V	40 7 r	41 Nb	42 Mo	43 Tc	44 R11	45 Rh	46 Pd	47 A a	48 Cd	49 In	50 Sn	51 Sh	52 Te	53 I	54 X e
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.757	127.60	126.904	131.29
55 Ce	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Ro	76 Os	77 Ir	78 Pt	79 A 11	80 Ha	81 T1	82 Ph	83 Bi	84 Po	85 A t	86 Rn
132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87 Er	88 R a	89 †A.c	104 Df	105	106 Sg	107 Bh	108 Hc	109 Mt	110 Dc	111 P.o							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							
¥T				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 E11	64 Gd	65 Th	66 Dv	67 Ho	68 Er	69 Tm	70 Yb	71 1 11
Lanulanue series			140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
t A atin: da acerica			90 Th	91 Pa	92 U	93 Nn	94 P11	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Em	101 Md	102 No	103 Lr	
Actinice series			232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Copyright © 2007 Pearson Prentice Hall, Inc.