November 9, 2018 **100 Points** Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to

Part 0: Warmup. 4 points each

- 1. Reactions with a positive ΔH° and a negative ΔS° are
 - a. spontaneous at all temperatures.
 - b. non-spontaneous at all temperatures.
 - c. spontaneous at low temperatures but non-spontaneous at high temperatures.
 - d. non-spontaneous at low temperatures but spontaneous at high temperatures.
- 2. Which of the processes below DOES NOT result in an increase in entropy?
 - a. $2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{H}_2\operatorname{O}(g)$
 - b. $H_2O(s) \rightarrow H_2O(l)$ (The melting of ice.)
 - c. $CO_2(s) \rightarrow CO_2(g)$ (The sublimation of dry ice.)
 - d. $NH_4NO_3(s) \rightarrow N_2O(g) + 2 H_2O(l)$
- 3. Consider the reaction below. If hydrogen chloride gas is being produced at 1.2 moles per liter per minute (M min⁻¹), at what rate is hydrogen gas being consumed?
 - $2ICl(g) + H_2(g) \rightarrow I_2(g) + 2HCl(g)$
 - c. 2.4 M min⁻¹ a. 1.2 M min⁻¹
 - b. 0.60 M min^{-1} d. Not enough information to determine.

Part I: Complete all of problems 4-9

- 4. Concisely discuss the validity of each of the following statements in a maximum of three sentences each. Clearly justify your reasoning. (12 points)
 - a. Reactions with a positive ΔH° and a positive ΔS° are always spontaneous.

b. Free energy changes provide a good indication of which reactions are favorable and fast, as well as those that are unfavorable and slow.

Answer _____

Answer _____

Answer _____

Name

Exam 3, Ch 7, 19, 14

discussion questions.

Chem 130

5. If even a tiny spark is introduced into a mixture of $H_2(g)$ and $O_2(g)$, a highly explosive exothermic reaction occurs. Without the spark, the mixture remains unreacted indefinitely. Explain this observation in terms of the reaction thermodynamics and kinetics. A reaction coordinate diagram may be useful.(8 points)

6. Consider a <u>first order</u> reaction: $B \rightarrow$ Products. An experiment is performed and it is determined that with a starting [B] = 0.100 M, it requires 56.2 seconds for the concentration to fall to 0.029 M. What is the rate constant for the reaction (with appropriate units)? How long would it take for the concentration to fall from 0.100 M to 0.0010 M? (14 points)

Species	ΔH ^o _f , kJ mol ⁻¹	Species	ΔH ^o _f , kJ mol ⁻¹
O(g)	+249.2	$H_2O(l)$	-285.8
$O_2(g)$	0	$H_2O(g)$	-241.8
H(g)	+218.0	$C_2H_6(g)$	-84.7
$H_2(g)$	0	$CO_2(g)$	-393.5

7. How much heat energy is produced when 0.100 kg of gaseous ethane (C₂H₆) undergoes a combustion reaction with excess oxygen gas to produce gaseous carbon dioxide and liquid water? (14 points)

Part II. Answer three (3) of problems 8-11. Clearly mark the problem you do not want graded. 14 points each.

8. In a constant-pressure experiment, a coffee-cup calorimeter contains 100.0 mL of 0.300 M HCl at 20.3°C. When 1.82 g zinc metal also at 20.3°C is added and is allowed to react via the net ionic equation below, the temperature rises to 30.5°C. What is the heat of reaction (ΔH_{rxn}) per mole of Zn? Assume no heat is lost to the environment during the course of the reaction and that the heat capacity and the density of the solution is the same as that of pure water (1.00 g/mL and 4.184 J/g°C, respectively).

$$Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$$

Reaction	ΔH^{o}
$N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(l)$	-622.2 kJ
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l)$	-285.8 kJ
$N_2(g) + O_2(g) \rightarrow 2NO(g)$	+173.1 kJ
$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$	-187.8 kJ

9. Determine ΔH° for the reaction $N_2H_4(l) + 2H_2O_2(l) \rightarrow N_2(g) + 4H_2O(l)$ from these data:

10. The reaction $I^{-}(aq) + OCI^{-}(aq) \rightarrow IO^{-}(aq) + CI^{-}(aq)$ was studied and the data below were obtained as the data	ained.
Determine the rate law and the value of the rate constant for this reaction.	

$[I^-]_0(mol/L)$	$[OCl^-]_0(mol/L)$	Initial Rate (mol/Ls)
0.12	0.18	0.00949
0.060	0.18	0.00237
0.030	0.090	0.000296
0.24	0.090	0.0190

Species	ΔH ^o _f , kJ mol ⁻¹	S ^o f, J mol ⁻¹ K ⁻¹	∆G° _f , kJ mol ⁻¹
$O_2(g)$	0	205.1	0
$H_2(g)$	0	130.7	0
NH ₄ NO ₃ (s)	-365.6	151.1	-183.9
$N_2O(g)$	82.05	219.9	104.2
$H_2O(1)$	-285.8	69.91	-237.1
$H_2O(g)$	-241.8	188.8	-228.6

11. Consider the reaction $N_2O(g) + 2H_2O(1) \rightarrow NH_4NO_3(s)$ at 298K.

a. Is the forward reaction exothermic or endothermic? (5 points)

b. What is the value of ΔG° at 298 K? (5 points)

Answer_____

c. Does the reaction occur spontaneously at high temperatures, low temperatures, all temperatures or no temperatures? Justify your answer. (4 points)

$R = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$ $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	$K = {}^{\circ}C + 273.15$	qreleased = -qabsorbed
q=mc∆T	$q=n_{LR}\Delta H_{rxn}$	q=m∆H
$\Delta S_{universe} = \Delta S_{system} - \Delta S_{surr}$	$\Delta G = \Delta H - T \Delta S$	$\Delta S_{surr} = -\Delta H_{sys}/T$
rate = $k[A]^0$	$[\mathbf{A}]_{t} = -\mathbf{k}t + [\mathbf{A}]_{0}$	$t_{1/2} = [A]_0/2k$
rate = $k[A]^1$	$\ln[A]_t = -kt + \ln[A]_0$	$t_{1/2} = 0.693/k$
rate = $k[A]^2$	$\frac{1}{\left[A\right]_{t}} = kt + \frac{1}{\left[A\right]_{0}}$	$t_{1/2} = 1/(k[A]_0)$
$\mathbf{k} = \mathbf{A}\mathbf{e}^{-\left(\mathbf{E}_{a}/_{\mathrm{RT}}\right)}$	$\ln \mathbf{k} = -\left(\frac{\mathbf{E}_{a}}{\mathbf{R}}\right)\left(\frac{1}{\mathbf{T}}\right) + \ln \mathbf{A}$	slope = m = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$

http://mentalfloss.com/article/61102/12-funny-and-delicious-venn-diagrams

To save some calculation time, you may round all atomic masses to two (2) decimal points.

1																	18
1A																	8A
1 H	2											13	14	15	16	17	2 He
1.00794	2A											3A	4A	5A	6A	7A	4.00260
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
6.941	9.01218											10.811	12.011	14.0067	15.9994	18.9984	20.1797
11 No	12 Mg	3	4	5	6	7	8	9	10	11	12	13	14 S;	15 P	16 S	17 Cl	18 A r
22.9898	24.3050	3B	4B	5B	6B	7B	/	-8B-		1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
37 Rb	38 Sr	39 Y	40 Zr	41 Nh	42 Mo	43 Tc	44 R11	45 Rh	46 Pd	47 Ao	48 Cd	49 In	50 Sn	51 Sh	52 Te	53 I	54 Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.757	127.60	126.904	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87	88	89 +	104 DC	105	106	107	108	109	110	111							
Fr	Ка	'Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.025	227.028	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
[†] Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2007 Pearson Prentice Hall, Inc.

6