1. The reaction of calcium hydride with water can be used to prepare small quantities of hydrogen gas, as is done to fill weather-observation balloons.
$\mathrm{CaH}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})$ (not balanced)
(a) How many grams of water are consumed in the reaction of $56.2 \mathrm{~g} \mathrm{CaH}_{2}$?
(b) What mass of $\mathrm{CaH}_{2}(\mathrm{~s})$ must react with an excess of water to produce 8.12×10^{24} molecules of H_{2} ?
2. The reaction of potassium superoxide, KO_{2}, is used in life-support systems to replace $\mathrm{CO}_{2}(\mathrm{~g})$ in expired air with $\mathrm{O}_{2}(\mathrm{~g})$.
$4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3}(\mathrm{~S})+3 \mathrm{O}_{2}(\mathrm{~g})$
(a) How many moles of $\mathrm{O}_{2}(\mathrm{~g})$ are produced by the reaction of $156 \mathrm{~g} \mathrm{CO}_{2}$ with excess KO_{2} ?
(b) How many grams of KO_{2} are consumed per $100.0 \mathrm{~g} \mathrm{CO}_{2}$ removed from expired air?
3. Ammonia can be generated by heating together the solids $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$ with CaCl_{2} and $\mathrm{H}_{2} \mathrm{O}$ also being formed. (a) If a mixture containing 33.0 g each of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$ is heated, how many grams of NH_{3} will form? (b) Which reactant remains in excess, and in what mass?
4. How many grams of acetic acid must be allowed to react with an excess of PCl_{3} to produce 75 g of acetyl chloride $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl}\right)$, if the reaction has a 78.2% yield?
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{PCl}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCI}+\mathrm{H}_{3} \mathrm{PO}_{3}$ (not balanced)
5. Azobenzene $\left(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right)$, an intermediate in the manufacture of dyes, can be prepared from nitrobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\right)$ by reaction with triethylene glycol $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}\right)$. In one reaction, 0.10 L of nitrobenzene ($d=1.20 \mathrm{~g} / \mathrm{mL}$) and 0.30 L of triethylene glycol ($d=1.12 \mathrm{~g} / \mathrm{mL}$) yields 55 g azobenzene. What are the (a) theoretical yield, (b) actual yield, and (c) percent yield of this reaction?

$$
2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+4 \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4} \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}+4 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}+4 \mathrm{H}_{2} \mathrm{O}
$$

6. Suppose that reactions (a) and (b) have a 92% yield. Starting with 112 g CH 44 in reaction (a) and an excess of $\mathrm{Cl}_{2}(\mathrm{~g})$, how many grams of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are formed in reaction (b)?
(a) $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
(b) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$
