1. The reaction of calcium hydride with water can be used to prepare small quantities of hydrogen gas, as is done to fill weather-observation balloons.

 $CaH_2(s) + H_2O(I) \rightarrow Ca(OH)_2(s) + H_2(g)$ (not balanced)

- (a) How many grams of water are consumed in the reaction of 56.2 g CaH₂?
- (b) What mass of CaH₂(s) must react with an excess of water to produce 8.12 X 10²⁴ molecules of H₂?

2. The reaction of potassium superoxide, KO₂, is used in life-support systems to replace CO₂(g) in expired air with O₂(g).

 $4 \text{ KO}_2(s) + 2 \text{ CO}_2(g) \rightarrow 2 \text{ K}_2 \text{CO}_3(S) + 3 \text{O}_2(g)$

- (a) How many moles of $O_2(g)$ are produced by the reaction of 156 g CO₂ with excess KO₂?
- (b) How many grams of KO₂ are consumed per 100.0 g CO₂ removed from expired air?

3. Ammonia can be generated by heating together the solids NH₄Cl and Ca(OH)₂ with CaCl₂ and H₂O also being formed. (a) If a mixture containing 33.0 g each of NH₄Cl and Ca(OH)₂ is heated, how many grams of NH₃ will form? (b) Which reactant remains in excess, and in what mass?

4. How many grams of acetic acid must be allowed to react with an excess of PCl₃ to produce 75 g of acetyl chloride (C₂H₃OCl), if the reaction has a 78.2% yield? $C_2H_4O_2 + PCl_3 \rightarrow C_2H_3OCI + H_3PO_3$ (not balanced)

5. Azobenzene ((C_6H_5N)₂), an intermediate in the manufacture of dyes, can be prepared from nitrobenzene ($C_6H_5NO_2$) by reaction with triethylene glycol ($C_6H_{14}O_4$). In one reaction, 0.10 L of nitrobenzene (d = 1.20 g/mL) and 0.30 L of triethylene glycol (d = 1.12 g/mL) yields 55 g azobenzene. What are the (a) theoretical yield, (b) actual yield, and (c) percent yield of this reaction?

 $2 \ C_6H_5NO_2 + 4 \ C_6H_{14}O_4 \rightarrow (C_6H_5N)_2 + 4 \ C_6H_{12}O_4 + 4 \ H_2O$

6. Suppose that reactions (a) and (b) have a 92% yield. Starting with 112 g CH₄ in reaction (a) and an excess of Cl₂(g), how many grams of CH₂Cl₂ are formed in reaction (b)?
(a) CH₄ + Cl₂ → CH₃Cl + HCI
(b) CH₃Cl + Cl₂ → CH₂Cl₂ + HCI