1. The reaction of calcium hydride with water can be used to prepare small quantities of hydrogen gas, as is done to fill weather-observation balloons.

$$
\mathrm{CaH}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \text { (not balanced) }
$$

(a) How many grams of water are consumed in the reaction of $56.2 \mathrm{~g} \mathrm{CaH}_{2}$?
(b) What mass of $\mathrm{CaH}_{2}(\mathrm{~s})$ must react with an excess of water to produce 8.12×10^{24} molecules of H_{2} ?

$$
\mathrm{CaH}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

a)

$$
56.2 \mathrm{~g} \mathrm{CaH}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CaH}_{2}}{42.10 \mathrm{~g} \mathrm{CaH}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CaH}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=48.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

b)
8.12×10^{24} molec. $\mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{6.02 \times 10^{23} \text { molec. }} \times \frac{1 \mathrm{~mol} \mathrm{CaH}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{42.10 \mathrm{~g} \mathrm{CaH}_{2}}{1 \mathrm{~mol} \mathrm{CaH}_{2}}=284 \mathbf{g ~ C a H}_{2}$
2. The reaction of potassium superoxide, KO_{2}, is used in life-support systems to replace $\mathrm{CO}_{2}(\mathrm{~g})$ in expired air with $\mathrm{O}_{2}(\mathrm{~g})$.

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3}(\mathrm{~S})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

(a) How many moles of $\mathrm{O}_{2}(\mathrm{~g})$ are produced by the reaction of $156 \mathrm{~g} \mathrm{CO}_{2}$ with excess KO_{2} ?
(b) How many grams of KO_{2} are consumed per $100.0 \mathrm{~g} \mathrm{CO}_{2}$ removed from expired air?
a)

$$
156 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{CO}_{2}}=5.32 \mathrm{~mol} \mathrm{O}_{2}
$$

b)

$$
100 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{4 \mathrm{~mol} \mathrm{KO}_{2}}{2 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{71.10 \mathrm{~g} \mathrm{KO}_{2}}{1 \mathrm{~mol} \mathrm{KO}_{2}}=323 \mathrm{~g} \mathrm{KO}_{2}
$$

3. Ammonia can be generated by heating together the solids $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$ with CaCl_{2} and $\mathrm{H}_{2} \mathrm{O}$ also being formed. (a) If a mixture containing 33.0 g each of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$ is heated, how many grams of NH_{3} will form? (b) Which reactant remains in excess, and in what mass?

$$
2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a)

Find limiting reactant

$$
\begin{aligned}
& 33.0 \mathrm{~g} \mathrm{NH} 4 \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}}{53.50 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}} \times \frac{17.04 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=10.5 \mathrm{~g} \mathrm{NH}_{3} \\
& 33.0 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1{\mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}^{1 \mathrm{~mol} \mathrm{NH}_{3}}} \times \frac{17.04 \mathrm{~g} \mathrm{NH}_{3}}{15.2 \mathrm{~g} \mathrm{NH}_{3}}
\end{aligned}
$$

Therefore $\mathrm{NH}_{4} \mathrm{Cl}$ is the limiting reactant and $10.5 \mathrm{~g} \mathrm{NH}_{3}$ can be made.
b)

$$
10.5 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.04 \mathrm{~g} \mathrm{NH}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{74.01 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}=22.8 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}
$$

Therefore $22.8 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ will be consumed and $(33.0-22.8) \mathrm{g}=10.2 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ will remain.
4. How many grams of acetic acid must be allowed to react with an excess of PCl_{3} to produce 75 g of acetyl chloride $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl}\right)$, if the reaction has a 78.2% yield?

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{PCl}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCI}+\mathrm{H}_{3} \mathrm{PO}_{3} \text { (not balanced) }
$$

We need the theoretical yield to do the calculation:

$$
3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{PCl}_{3} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCI}+\mathrm{H}_{3} \mathrm{PO}_{3}
$$

Theoretical yield $=$ actual yield $/ 0.782=75 \mathrm{~g} / 0.782=95.9 \mathrm{~g}$

$$
95.9 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl}}{78.50 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl}} \times \frac{3 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}}{3 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl}} \times \frac{60.06 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}}=73.4 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

5. Azobenzene $\left(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right)$, an intermediate in the manufacture of dyes, can be prepared from nitrobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\right)$ by reaction with triethylene glycol $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}\right)$. In one reaction, 0.10 L of nitrobenzene ($d=1.20 \mathrm{~g} / \mathrm{mL}$) and 0.30 L of triethylene glycol ($d=1.12 \mathrm{~g} / \mathrm{mL}$) yields 55 g azobenzene. What are the (a) theoretical yield, (b) actual yield, and (c) percent yield of this reaction?

$$
2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+4 \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4} \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}+4 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}+4 \mathrm{H}_{2} \mathrm{O}
$$

a)

$$
100 \mathrm{~mL} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \times \frac{1.20 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}{1 \mathrm{~mL} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}{123.1 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}} \times \frac{1 \mathrm{~mol}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}}{2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}=0.487 \mathrm{~mol}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}
$$

$$
300 \mathrm{~mL} \mathrm{C} 66 \mathrm{H}_{14} \mathrm{O}_{4} \times \frac{1.12 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}}{1} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}}{1} \times 1 \mathrm{~mol}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}=0.559 \mathrm{~mol}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}
$$

$$
1 \mathrm{~mL} \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4} \quad 150.2 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4} \quad 4 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}
$$

So, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ is our limiting reactant and our theoretical yield is:

$$
0.487 \mathrm{~mol}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \times \frac{182.26 \mathrm{~g}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}}{1 \mathrm{~mol}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}}=88.8 \mathrm{~g}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{2}
$$

b) The actual yield is 55 g
c)

$$
\% \text { yield }=\frac{55 \mathrm{~g}}{89 \mathrm{~g}} \times 100 \%=62 \% \text { yield }
$$

6. Suppose that reactions (a) and (b) have a 92% yield. Starting with 112 g CH 4 in reaction (a) and an excess of $\mathrm{Cl}_{2}(\mathrm{~g})$, how many grams of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are formed in reaction (b)?
(a) $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
(b) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$

$$
112 \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.05 \mathrm{~g} \mathrm{CH}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CH}_{4}}=6.98 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}
$$

So, the theoretical yield of reaction (a) is 6.98 mol , but the\% yield is 92%, so the actual yield is $6.98 \mathrm{~mol} \times 0.92=6.42 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}$. This quantity continues to reaction (b)

$$
6.42 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}} \times \frac{84.93 \mathrm{~g} \mathrm{CH}_{2} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{Cl}_{2}}=545.2 \mathrm{~g} \mathrm{CH}_{2} \mathrm{Cl}_{2}
$$

So, the theoretical yield of reaction (b) is $545.2 \mathrm{~g} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, but the\% yield is 92%, so the actual yield is $545.2 \mathrm{~g} \mathrm{CH}_{2} \mathrm{Cl}_{2} \times 0.92=502 \mathrm{~g} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

