Solutions to Suggested Chapter 12 Problems

12-11. For 0.0050 M (CH₃CH₂CH₂)₄N⁺Br⁻ plus 0.0050 M (CH₃)₄N⁺C1⁻, μ = 0.010 M. The size of the ion (CH₃CH₂CH₂)₄N⁺ is 800 pm. At μ = 0.01 M, γ = 0.912 for an ion of charge ±1 with α = 800 pm. \mathcal{A} = (0.0050)(0.912) = 0.0046

12-13. (a)
$$\log \gamma = \frac{-0.51 \cdot 2^2 \cdot \sqrt{0.083}}{1 + (600\sqrt{0.083/305})} = -0.375 \Rightarrow \gamma = 10^{-0.375} = 0.42_2$$

(b)
$$\gamma = \left(\frac{0.083 - 0.05}{0.1 - 0.05}\right)(0.405 - 0.485) + 0.485 = 0.43_2$$

12-16. At an ionic strength of 0.050 M, $\gamma_{H^+} = 0.86$ and $\gamma_{OH^-} = 0.81$.

$$[H^+]\gamma_{H^+}[OH^-]\gamma_{OH^-} = (x)(0.86)(x)(0.81) = 1.0 \times 10^{-14}$$

 $\Rightarrow x = [H^+] = 1.2 \times 10^{-7} \text{ M}$
 $pH = -log([H^+]\gamma_{H^+}) = -log((1.2 \times 10^{-7})(0.86)) = 6.99$

12-19. The ionic strength is 0.100 M from (CH₃)₄N⁺IO₃, assuming that the concentration of ions derived from dissolution of Ba(IO₃)₂ is negligible.

Ba(IO₃)₂(s)
$$\rightleftharpoons$$
 Ba²⁺ + 2IO₃ $K_{sp} = 1.5 \times 10^{-9}$
 $x = 2x + 0.100$
 ≈ 0.100

$$K_{\rm sp} = 1.5 \times 10^{-9} = [\text{Ba}^{2+}] \, \gamma_{\text{Ba}^{2+}} [\text{IO}_3^-]^2 \, \gamma_{\text{IO}_3}^2$$

 $= x(0.38)(2x + 0.100)^2 \, (0.775)^2 \approx x(0.38)(0.100)^2 \, (0.775)^2$
 $\Rightarrow x = [\text{Ba}^{2+}] = 6.6 \times 10^{-7} \, \text{M}$

Our assumption is verified:

 $[IO_3^-]$ from Ba $(IO_3)_2 = 2x = 1.32 \times 10^{-6} \text{ M} << 0.100 \text{ M}$ from $(CH_3)_4\text{N}^+IO_3^-$.

12-25. (a)
$$2[Mg^{2+}] + [H^{+}] = [Br^{-}] + [OH^{-}]$$

(b)
$$2[Mg^{2+}] + [H^+] + [MgBr^+] = [Br^-] + [OH^-]$$

12-29. (a) There is 3/2 as much calcium as phosphorus in the solution. So, $2[Ca^{2+}] = 3\{[PO_4^{3-}] + [HPO_4^{2-}] + [H_2PO_4] + [H_3PO_4]\}$

(b) There is
$$3/2$$
 as much sulfur as iron in the solution. So, $3\{[Fe^{3+}] + [Fe(OH)^{2+}] + [Fe(OH)^{+}] + [FeSO^{+}_{4}]\} = 2\{[SO^{2-}_{4}] + [HSO^{-}_{4}] + [FeSO^{+}_{4}]\}$

12-30.
$$Y_{total} = \frac{3}{2} X_{total}$$

$$2[X_2 Y_2^{2+}] + [X_2 Y^{4+}] + 3[X_2 Y_3] + [Y^{2-}] = \frac{3}{2} \{2[X_2 Y_2^{2+}] + 2[X_2 Y^{4+}] + 2[X_2 Y_3]\}$$

$$Y_{total}$$

Canceling like terms on both sides allows us to simplify the mass balance to $[Y^{2-}] = [X_2Y_2^{2+}] + 2[X_2Y^{4+}]$

12-37. (a)
$$\alpha_{\text{B}} = \frac{[\text{B}^+]}{[\text{B}] + [\text{BH}^+]} = \alpha_{\text{A}^-} = \frac{K_{\text{a}}}{[\text{H}^+] + K_{\text{a}}}$$

$$= \frac{6.3 \times 10^{-6}}{10^{-4.00} + 6.3 \times 10^{-6}} = 0.059$$

$$\alpha_{\rm BH^+} = \frac{[\rm BH^+]}{[\rm B] + [\rm BH^+]} = \alpha_{\rm HA} = \frac{[\rm H^+]}{[\rm H^+] + \it K_a}$$
$$= \frac{10^{-4.00}}{10^{-4.00} + 6.3 \times 10^{-6}} = 0.94$$

(b), (c)
$$\alpha_B \qquad \alpha_{BH}^+$$
 $pH = 5.00: \quad 0.39 \quad \quad 0.61$
 $pH = 6.00: \quad 0.86 \quad \quad 0.14$

12-38. (a)
$$K_a = K_w/K_b = 10^{-10.00}$$

$$\alpha_B = \frac{K_a}{[H^+] + K_a} = \frac{10^{-10.00}}{10^{-9.00} + 10^{-10.00}} = 0.090_9$$

$$\alpha_{BH^+} = \frac{[H^+]}{[H^+] + K_a} = \frac{10^{-9.00}}{10^{-9.00} + 10^{-10.00}} = 0.90_9$$

(b), (c)
$$\alpha_B$$
 α_{BH}^+
 $pH = 10.00: 0.50_0 0.50_0$
 $pH = 10.30: 0.66_6 0.33_4$

12-40.

	A	В	С	D	E	F	G
1	Fractional composition of diprotic acid						
2							
3	pK1 =	pH	[H+]	Denominator	Alpha(H2A)	Alpha(HA-)	Alpha(A2-)
4	3.02	1	1.00E-01	1.01E-02	9.91E-01	9.46E-03	3.13E-06
5	pK2 =	2	1.00E-02	1.10E-04	9.13E-01	8.71E-02	2.89E-04
6	4.48	3	1.00E-03	1.99E-06	5.03E-01	4.81E-01	1.59E-02
7	K1 =	4	1.00E-04	1.37E-07	7.29E-02	6.96E-01	2.31E-01
8	9.55E-04	5	1.00E-05	4.13E-08	2.42E-03	2.31E-01	7.66E-01
9	K2 =	6	1.00E-06	3.26E-08	3.07E-05	2.93E-02	9.71E-01
10	3.31E-05	7	1.00E-07	3.17E-08	3.15E-07	3.01E-03	9.97E-01
11		8	1.00E-08	3.16E-08	3.16E-09	3.02E-04	1.00E+00
12		_					
13	A8 = 10^-/	14	D4= C4^2+\$A\$8*C4+\$A\$8*		*\$A\$10	F4 = \$A\$8*C4/D4	
14	$C4 = 10^{-6}$	34	E4 = C4^2/D	D4		G4 = \$A\$8*\$A\$10/D4	