(b)
$$[H^+] = \sqrt{\frac{K_1 K_2 (0.100) + K_1 K_W}{K_1 + 0.100}} = 5.30 \times 10^{-5} \Rightarrow pH = 4.28$$

 $[HM^-] \approx 0.100 \text{ M} \quad [H_2M] = \frac{[HM^-][H^+]}{K_1} = 3.7 \times 10^{-3} \text{ M}$
 $[M^2-] = \frac{K_2 [HM^-]}{[H^+]} = 3.8 \times 10^{-3} \text{ M}$

The method of Box 9-2 would give more accurate answers, since [HM] is not that much greater than $[H_2M]$ or $[M^2-]$ in this case.

(c)
$$M^{2-} + H_2O \rightleftharpoons HM^- + OH^ K_{b1} = K_w/K_{a2} = 4.98 \times 10^{-9}$$
 $\frac{x^2}{0.100 - x} = K_{b1} \implies x = 2.23 \times 10^{-5} \implies pH = -\log \frac{K_w}{x} = 9.35$ $[M^{2-}] = 0.100 - x = 0.100 M$ $[HM^-] = x = 2.23 \times 10^{-5} M$ $[H_2M] = \frac{[H^+][HM^-]}{K_1} = 7.04 \times 10^{-12} M$ Case (a): $pH = 6.002$, $[HM^-] = 9.80 \times 10^{-3} M$, $[H_2M] = 9.76 \times 10^{-5} M$,

9-9. Case (a):
$$pH = 6.002$$
, $[HM^-] = 9.80 \times 10^{-3} \text{ M}$, $[H_2M] = 9.76 \times 10^{-5} \text{ M}$. $[M^2-] = 9.85 \times 10^{-5} \text{ M}$

Case (b):

Γ	Α	В	С	D	E	F	G	Н	1	J
1	Box 9-1	Successive	Approxir	nations						
2				,						
3	pK _{a1} =	4		1st approx.	2nd approx.	3rd approx.	4th approx.	5th approx.		15th approx.
4	pKa ₂ =	5	[HA] =	0.01000	0.003675	0.007675	0.005146	0.006745		0.00613201
5	K _{a1} =	0.0001	[H ⁺] =	3.15E-05	3.12E-05	3.14 E- 05	3.13E-05	3.14E-05	,	3.14E-05
6	K _{a2} =	0.00001	$[H_2A] =$	3.15E-03	1.15E-03	2.41E-03	1.61E-03	2.12E-03		1.92E-03
7	F=	0.01	[A ²⁻] =	3.18E-03	1.18 E -03	2.44E-03	1.64E-03	2.15E-03		1.95E-03
8	K _w =	1.00E-14	pH =	4.50	4.51	4.50	4.50	4.50		4.50
9								ļ		
		[HA] = F							L	
11	Cell D5:	Cell D5: [H ⁺] =SQRT((Ka1*Ka2*D4+Ka1*Kw)/(Ka1+D4))								
12	Cell D6:	$[H_2A] = D$	4*D5/Ka1	ĺ		<u> </u>				
	13 Cell D7: [A ²] = Ka2*D4/D5									<u> </u>
14	Cell D8: pH = -log10(D5)								L	ļ
	Cell E4: [HA] = F-D6-D7			Ĺ	<u> </u>			<u>. </u>		
16	After computing E4, then highlight cells D5:E8 and FILL RIGHT									
17	After completing column E, highlight cells E4:F:8 and FILL RIGHT									
18	8 Continue to highlight each column and FILL RIGHT									

9-13.
$$pH = pK_a + log \frac{[CO_3^2]}{[HCO_3^2]}$$

 $10.00 = 10.329 + log \frac{(x g)/(105.99 g/mol)}{(5.00 g)/(84.01 g/mol)} \implies x = 2.96 g$

9-15. Picolinic acid is HA, the intermediate form of a diprotic system with $pK_1 = 1.01$ and $pK_2 = 5.39$. To achieve pH 5.50, we need a mixture of HA + A⁻.

$$5.50 = 5.39 + \log \frac{x}{10.0 - x} \implies x = 5.63 \text{ mmol} \approx 5.63 \text{ mL NaOH}$$

Procedure: Dissolve 10.0 mmol (1.23 g) picolinic acid in ≈ 75 mL H_2O in a beaker. Add NaOH (≈ 5.63 mL) until the measured pH is 5.50. Transfer to a 100 mL volumetric flask and use small portions of H_2O to rinse the contents of the beaker into the flask. Dilute to 100.0 mL and mix well.

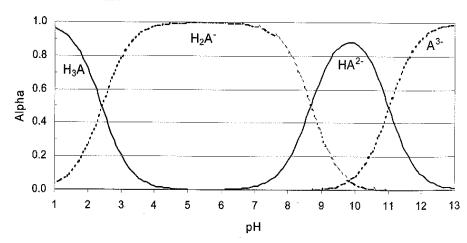
9-17. p K_2 for phosphoric acid is 7.20, so it has a high buffer capacity at pH 7.45 (from the buffer pair $H_2PO_4^-/HPO_4^{2-}$). At pH 8.5, the buffer capacity of phosphate would be low and it would not be very useful.

9-20. (a)
$$H_3PO_4$$
 $\stackrel{pK_1 = 2.148}{\rightarrow} H_2PO_4^ \stackrel{pK_2 = 7.198}{\rightarrow} HPO_4^{2-}$ $\stackrel{pK_3 = 12.375}{\rightarrow} PO_4^{3-}$ $\stackrel{\uparrow}{pH} \approx (2.148+7.198)/2$ $pH \approx (7.198+12.375)/2$ $= 4.67$ $= 9.79$

pH 7.45 corresponds to a mixture of NaH₂PO₄ and Na₂HPO₄. (You could get the same result by mixing other combinations such as H₃PO₄ and Na₃PO₄ or H₃PO₄ and Na₂HPO₄.)

(b)
$$pH = pK_2 + log \frac{[HPO_4^2-]}{[H_2PO_4^2]}$$

 $7.45 = 7.198 + log \frac{[HPO_4^2-]}{[H_2PO_4^2]} \Rightarrow \frac{[HPO_4^2-]}{[H_2PO_4^2]} = 1.78_6$


Combining this last result with $[HPO_4^{2-}] + [H_2PO_4^{-}] = 0.0500 \text{ M}$ gives $[HPO_4^{2-}] = 0.0320_5 \text{ M}$ and $[H_2PO_4^{-}] = 0.0179_5 \text{ M}$. Use 4.55 g of Na₂HPO₄ and 2.15 g of NaH₂PO₄.

9-25. (a) 4.00 (b) 8.00 (c) H_2A (d) HA^- (e) A^{2-}

9-28. Fraction in form HA =
$$\alpha_{\text{HA}} = \frac{[\text{H}^+]}{[\text{H}^+] + K_a} = \frac{10^{-5}}{10^{-5} + 10^{-4}} = 0.091$$
. Fraction in form A⁻ = $\alpha_{\text{A}^-} = \frac{K_a}{[\text{H}^+] + K_a} = 0.909$.

$$\frac{[A^-]}{[HA]} = \frac{\alpha_{A^-}}{\alpha_{HA}} = 10$$
, which makes sense.

9-36.

	A	В	С	D	E	F	Г		
1			for triprotic a	<u> </u>	<u> </u>	<u>Г</u>	G		
2	i ractional c	Composition					*****		
—	124		[3		
	K1 =	рН	[H+]	α(H3A)	α(H2A ⁻)	$\alpha(HA^{2})$	$\alpha(A^{3-})$		
4	3.89E-03		1.00E-01	9.63E-01	3.74E-02	8.01E-10	7.82E-20		
5	K2 =	2	1.00E-02	7.20E-01	2.80E-01	5.99E-08	5.85E-17		
6	2.14E-09	3	1.00E-03	2.04E-01	7.96E-01	1.70E-06	1.66E-14		
7	K3 =	4	1.00E-04	2.51E-02	9.75E-01	2.08E-05	2.04E-12		
8	9.77E-12	5	1.00E-05	2.56E-03	9.97E-01	2.13E-04	2.08E-10		
9	pK1 =	6	1.00E-06	2.56E-04	9.98E-01	2.13E-03	2.08E-08		
10	2.41	7	1.00E-07	2.52E-05	9.79E-01	2.09E-02	2.05E-06		
11	pK2 =	8	1.00E-08	2.12E-06	8.24E-01	1.76E-01	1.72E-04		
12	8.67	9	1.00E-09	8.14E-08	3.17E-01	6.77E-01	6.61E-03		
13	pK3 =	10	1.00E-10	1.05E-09	4.09E-02	8.74E-01	8.54E-02		
14	11.01	11	1.00E-11	6.07E-12	2.36E-03	5.05E-01	4.93E-01		
15		12	1.00E-12	1.12E-14	4.34E-05	9.28E-02	9.07E-01		
16		13	1.00E-13	1.22E-17	4.74E-07	1.01E-02	9.90E-01		
17	A4 = 10^-A10					1941	,		
18	$C4 = 10^{-B4}$	4							
19									
20	E4 = \$C4^2*\$A\$4/(\$C4^3+\$C4^2*\$A\$4+\$C4*\$A\$4*\$A\$6+\$A\$4*\$A\$6								
	F4 = \$C4*\$A\$4*\$A\$6/(\$C4^3+\$C4^2*\$A\$4+\$C4*\$A\$4*\$A\$6+\$A\$4*\$A\$6*\$A\$8)								
22	G4 = \$A\$4*\$A\$6*\$A\$8/(\$C4^3+\$C4^2*\$A\$4+\$C4*\$A\$4*\$A\$6+\$A\$4*\$A\$6*\$A\$8)								