Chapter 6 Homework

6-6. HOBr + OCl
$$\rightleftharpoons$$
 HOCl + OBr $K_1 = 1/15$
HOCl \rightleftharpoons H⁺ + OCl $K_2 = 3.0 \times 10^{-8}$
HOBr \rightleftharpoons H⁺ + OBr $K_3 = 1/15$

6-8.
$$K = e^{-(59.0 \times 10^3 \text{ J/mol})/(8.314472 \text{ J/(K·mol)})(298.15 \text{ K})} = 5 \times 10^{-11}$$

6-10. (a)
$$K = P_{\text{H}_2\text{O}} = e^{-\Delta G^\circ/RT} = e^{-(\Delta H^\circ - T\Delta S^\circ)/RT}$$

= $e^{-\{[(63.11 \times 10^3 \text{ J/mol}) - (298.15\text{K})(148 \text{ J K}^{-1} \text{ mol}^{-1})]/(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298.15 \text{ K})\}}$
= $4.7 \times 10^{-4} \text{ bar}$

(b)
$$P_{\text{H}_2\text{O}} = 1 = e^{-(\Delta H^\circ - T\Delta S^\circ)/RT} \Rightarrow \Delta H^\circ - T\Delta S^\circ \text{ must be zero.}$$

$$\Delta H^\circ - T\Delta S^\circ = 0 \Rightarrow T = \frac{\Delta H^\circ}{\Delta S^\circ} = 426 \text{ K} = 153^\circ\text{C}$$

6-11. (a) Let's designate the equilibrium constant at temperature T_1 as K_1 and the equilibrium constant at temperature T_2 as K_2 .

$$K_1 = e^{-\Delta G^{\circ}/RT_1} = e^{-(\Delta H^{\circ} - T_1 \Delta S^{\circ})/RT_1} = e^{-\Delta H^{\circ}/RT_1} \cdot e^{\Delta S^{\circ}/R}$$

Similarly, $K_2 = e^{-\Delta H^{\circ}/RT_2} \cdot e^{\Delta S^{\circ}/R}$

Dividing K_1 by K_2 gives $\frac{K_1}{K_2} = e^{-(\Delta H^\circ/R)(1/T_1 - 1/T_2)}$

$$\Rightarrow \Delta H^{\circ} = \left(\frac{1}{T_2} - \frac{1}{T_1}\right)^{-1} R \ln \frac{K_1}{K_2}$$

Putting in $K_1 = 1.479 \times 10^{-5}$ at $T_1 = 278.15$ K and

$$K_2 = 1.570 \times 10^{-5}$$
 at $T_2 = 283.15$ K gives $\Delta H^{\circ} = +7.82$ kJ/mol.

(b)
$$K = e^{-\Delta H^{\circ}/RT \cdot e^{\Delta S^{\circ}/R}}$$

$$\ln K = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$$

A graph of $\ln K$ vs. 1/T will have a slope of $-\Delta H^{\circ}/R$

6-14.
$$[Cu^+][Br^-] = K_{sp}$$
 $[Cu^+][0.10] = 5 \times 10^{-9} \implies [Cu^+] = 5 \times 10^{-8} \text{ M}$

6-16. If we let
$$x = [Cu^{2+}]$$
, then $[SO_4^{2-}] = \frac{1}{4}x$.

$$K = [Cu^{2+}]^4 [OH^-]^6 [SO_4^{2-}] = (x)^4 (1.0 \times 10^{-6})^6 (\frac{1}{4}x) = 2.3 \times 10^{-69}$$
$$\Rightarrow x = [Cu^{2+}] = \left(\frac{(4)(2.3 \times 10^{-69})}{(1.0 \times 10^{-6})^6}\right)^{1/5} = 3.9 \times 10^{-7} M$$

6-17. (a)
$$[Zn^{2+}]^2[Fe(CN)_6^{4-}] = (0.000 \ 10)^2[Fe(CN)_6^{4-}] = 2.1 \times 10^{-16}$$

 $\Rightarrow [Fe(CN)_6^{4-}] = 2.1 \times 10^{-8} M$

(b)
$$[Zn^{2+}]^2[Fe(CN)_6^{4-}] = (5.0 \times 10^{-7})^2[Fe(CN)_6^{4-}] = 2.1 \times 10^{-16}$$

 $\Rightarrow [Fe(CN)_6^{4-}] = 8.4 \times 10^{-4} M$

6-20. BaCrO₄(s)
$$\rightleftharpoons$$
 Ba²⁺ + CrO₄²⁻ $K_{sp} = 2.1 \times 10^{-10}$
Ag₂CrO₄(s) \rightleftharpoons 2Ag⁺ + CrO₄²⁻ $K_{sp} = 1.2 \times 10^{-12}$

The stoichiometries are not identical, so it is not clear that the salt with lower $K_{\rm sp}$ will precipitate first. Let's try each possibility. Suppose that BaCrO₄ precipitates first. The concentration of ${\rm CrO_4^{2-}}$ that will reduce Ba²⁺ to 0.1% of its initial concentration is

$$[Ba^{2+}][CrO_4^{2-}] = [1.0 \times 10^{-5}][CrO_4^{2-}] = 2.1 \times 10^{-10} \Rightarrow [CrO_4^{2-}] = 2.1 \times 10^{-5} M.$$

Will this much chromate precipitate 0.010 M Ag⁺? We test by evaluating the reaction quotient for Ag₂CrO₄:

$$Q = [Ag^+]^2[CrO_4^{2-}] = (0.010)^2(2.1 \times 10^{-5}) = 2.1 \times 10^{-9} > K_{sp} \text{ for } Ag_2CrO_4$$

Since $Q > K_{sp}$ for Ag_2CrO_4 , Ag^+ will precipitate.

Let's try the reverse calculation. If Ag_2CrO_4 precipitates first, the concentration of CrO_4^{2-} that will reduce Ag^+ to $1.0 \times 10^{-5}M$ is

$$[Ag^{+}]^{2}[CrO_{4}^{2-}] = [1.0 \times 10^{-5}]^{2}[CrO_{4}^{2-}] = 1.2 \times 10^{-12} \Rightarrow [CrO_{4}^{2-}] = 0.012 \text{ M}.$$

This concentration of CrO_4^{2-} exceeds the concentration required to precipitate 99.90% of Ba^{2+} . Neither Ag^+ nor Ba^{2+} can be 99.90% precipitated without precipitating the other ion.

6-25.
$$[Zn^{2+}] = K_{sp}/[OH^-]^2 = 2._{93} \times 10^{-3} \text{ M}$$

 $[ZnOH^+] = \beta_1[Zn^{2+}] [OH^-] = \beta_1K_{sp}/[OH^-] = 9 \times 10^{-6} \text{ M}$
 $[Zn(OH)_2(aq)] = \beta_2[Zn^{2+}] [OH^-]^2 = \beta_3K_{sp} [OH^-] = 6 \times 10^{-6} \text{ M}$
 $[Zn(OH)_3] = \beta_3[Zn^{2+}] [OH^-]^3 = \beta_3K_{sp} [OH^-] = 8 \times 10^{-9} \text{ M}$
 $[Zn(OH)_4^2] = \beta_4[Zn^{2+}] [OH^-]^4 = \beta_4K_{sp} [OH^-]^2 = 9 \times 10^{-14} \text{ M}$

- 6-30. Dissolved CO₂ from the atmosphere lowers the pH by reacting with water to form carbonic acid. Water can be distilled under an inert atmosphere to exclude CO₂, or most CO₂ can be removed by boiling the distilled water.
- **6-33.** (a) HI (b) H₂O
- 6-39. $[La^{3+}][OH^-]^3 = K_{sp} = 2 \times 10^{-21}$ $[OH^-]^3 = K_{sp} / (0.010) \Rightarrow [OH^-] = 5.8 \times 10^{-7} \text{ M} \Rightarrow pH = 7.8$

6-50.
$$K_{a1} = \frac{K_{w}}{K_{b3}} = 7.04 \times 10^{-3}$$
 $K_{a2} = \frac{K_{w}}{K_{b2}} = 6.25 \times 10^{-8}$ $K_{a3} = \frac{K_{w}}{K_{b1}} = 4.3 \times 10^{-13}$

- **6-51.** Add the two reactions and multiply their equilibrium constants to get $K = 2.9 \times 10^{-6}$.
- 6-52. (a) $Ca(OH)_2(s) \rightleftharpoons Ca^{2+} + 2OH^2$ x = 2x $x(2x)^2 = K_{sp} = 10^{-5.19} \Rightarrow x = 1.2 \times 10^{-2} M$
 - (b) Since some Ca^{2+} reacts with OH^- to form $CaOH^+$, the K_{sp} reaction will be drawn to the right, and the solubility of $Ca(OH)_2$ will be greater than we would expect just on the basis of K_{sp} .