Chapter 5 Homework

5-16. (a) For the fortification level of 22.2 ng/mL, the mean of the 5 values is 23.6₆ ng/mL and the standard deviation is 5.6₃ ng/mL.

Precision =
$$100 \times \frac{5.63}{23.66} = 23.8\%$$
.
Accuracy = $100 \times \frac{23.66 - 22.2}{22.2} = 6.6\%$

For the fortification level of 88.2 ng/mL, the mean of the 5 values is 82.4_8 ng/mL and the standard deviation is 11.4_9 ng/mL.

Precision =
$$100 \times \frac{11.49}{82.48} = 13.9\%$$
.

Accuracy =
$$100 \times \frac{82.48 - 88.2}{88.2} = -6.5\%$$

For the fortification level of 314 ng/mL, the mean of the 5 values is 302.8 ng/mL and the standard deviation is 23.5_1 ng/mL.

Precision =
$$100 \times \frac{23.51}{302.8} = 7.8\%$$
.
Accuracy = $100 \times \frac{302.8 - 314}{314} = -3.6\%$

(b) Standard deviation of 10 samples: s = 28.2; mean blank: $y_{blank} = 45.0$ Signal detection limit = $y_{blank} + 3s = 45.0 + (3)(28.2) = 129.6$

Concentration detection limit = $\frac{3s}{m} = \frac{(3)(28.2)}{1.75 \times 10^9 \text{ M}^{-1}} = 4.8 \times 10^{-8} \text{ M}$

Lower limit of quantitation
$$= \frac{10s}{m} = \frac{(10)(28.2)}{1.75 \times 10^9 \text{ M}^{-1}} = 1.6 \times 10^{-7} \text{ M}$$

5-18. Mean = 0.383 µg/L and standard deviation = 0.0214 µg/L % recovery = $\frac{0.383 µg/L}{0.40 µg/L} \times 100 = 96\%$

The measurements are already expressed in concentration units. The concentration detection limit is 3 times the standard deviation = $3(0.0214 \ \mu g/L) = 0.064 \ \mu g/L$.

5-19. The low concentration of Ni-EDTA has a standard deviation of 28.2 counts for 10 measurements. The detection limit is estimated to be

 $y_{d1} = y_{blank} + 3s = 45 + 3(28.2) = 129.6$ counts

To convert counts to molarity, we note that a 1.00 μ M solution gave a net signal of 1797 - 45 = 1752 counts. The slope of the calibration curve is therefore estimated to be

$$m = \frac{y_{\text{sample}} - y_{\text{blank}}}{\text{sample concentration}} = \frac{1797 - 45}{1.00 \,\mu\text{M}} = 1.75_2 \times 10^9 \,\frac{\text{counts}}{\text{M}}$$

The minimum detectable concentration is

$$\frac{3 s}{m} = \frac{(3)(28.2) \text{ counts}}{1.75_2 \times 10^9 \text{ counts/M}} = 4.8 \times 10^{-8} \text{ M}$$

5-22. Comparison of Lab C with Lab A:

First, use the *F* test to see if the standard deviations are significantly different: $F_{\text{calculated}} = s_{\text{C}}^2/s_{\text{A}}^2 = 0.78^2/0.14^2 = 31.0 > F_{\text{table}} = 3.88 \text{ (with 2 degrees of freedom for } s_{\text{A}} \text{)}$

Standard deviations are not equivalent, so use the following t test:

Degrees of freedom
$$= \frac{(s_1^{2/n_1} + s_2^{2/n_2})^2}{(s_1^{2/n_1})^2} = \frac{(0.14^{2/13} + 0.78^{2/3})^2}{(0.14^{2/13})^2} = 2.03 \approx 2$$
$$t_{\text{calculated}} = \frac{|\overline{x}_1 - \overline{x}_2|}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = \frac{|1.59 - 2.68|}{\sqrt{0.14^2/13 + 0.78^{2/3}}} = 2.4_1$$

For 2 degrees of freedom, $t_{table} = 4.303$ for 95% confidence. Since $t_{calculated} < t_{table}$, we conclude that the difference between Lab C and Lab A is not significant.

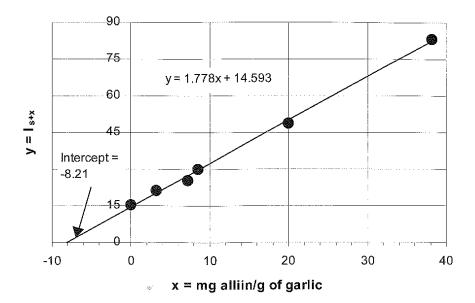
Comparison of Lab C with Lab B: $F_{\text{calculated}} = s_{\text{C}}^2/s_{\text{B}}^2 = 0.78^2/0.56^2 = 1.9_4 < F_{\text{table}} = 4.74$ (with 2 degrees of freedom for s_{C} and 7 degrees of freedom for s_{A}). The standard deviations are not significantly different, so we use the following t test:

$$s_{\text{pooled}} = \sqrt{\frac{0.56^2 (8-1) + 0.78^2 (3-1)}{8+3-2}} = 0.61_6$$
$$t_{\text{calculated}} = \frac{|1.65 - 2.68|}{0.61_6} \sqrt{\frac{8 \cdot 3}{8+3}} = 2.4_7$$

 $t_{\text{table}} = 2.262 \text{ for } 95\%$ confidence and 8 + 3 - 2 = 9 degrees of freedom. $t_{\text{calculated}} > t_{\text{table}}$, so the difference is significant at the 95% confidence level.

It makes no sense to conclude that Lab C $[2.68 \pm 0.78 (3)] >$ Lab B $[1.65 \pm 0.56 (8)]$, but Lab C = Lab A $[1.59 \pm 0.14 (13)]$. The problem with the comparison of Labs C and A is that the standard deviation of C is much greater than the standard deviation of A and the number of replicates for C is much less than the number of replicates for A. The result is that we used a large composite standard deviation and a small composite number of degrees of freedom. The conclusion is biased by a large standard deviation and a small number of degrees of freedom. I would tentatively conclude that results from Lab C are greater than results from Labs B and A. I would also ask for more replicate results from Lab C. With just 3 replications, it is hard to reach any statistically significant conclusions.

5-25. (a) All solutions were made up to the same final volume. Therefore, we prepare a graph of signal versus concentration of added standard. The line in the graph was drawn by the method of least squares with the following spreadsheet. The *x*-intercept, 8.72 ppb, is the concentration of unknown in the 10mL solution. In cell B27 of the spreadsheet (on the next page), we find the standard deviation of the *x*-intercept to be 0.427 ppm. A reasonable answer is $8.7_2 \pm 0.4_3$ ppb.



(b) Unknown solution volume = 10.0 mL with Sr = 8.72 ppb = 8.72 ng/mL. In 10.0 mL, there are (10 mL)(8.72 ng/mL) = 87.2 ng. Solution was made from 0.750 mg of tooth enamel. Sr (ppm) in tooth enamel is

Concentration (ppm) =
$$\frac{\text{mass of Sr}}{\text{mass of enamel}} \times 10^{6}$$

= $\frac{87.2 \times 10^{-9} \text{ g}}{0.750 \times 10^{-3} \text{ g}} \times 10^{6}$ = 116 ppm

- (c) Relative uncertainty of intercept is $100 \times 0.43/8.72 = 4.9\%$, which leads to a 4.9% uncertainty in the concentration of Sr in the tooth enamel. 0.049×116 ppm = 5.7 ppm. Final answer: 116 ± 6 ppm.
- (d) Student's t for n-2=5-2=3 degrees of freedom and 95% confidence is 3.182. We found standard deviation = 5.7 ppm. 95% confidence interval is $\pm ts = (3.182)(5.7 \text{ ppm}) = 18.1 \text{ ppm}$. Answer: $116 \pm 18 \text{ ppm}$.

5-28.		A	В	С		
	1	Standard Addition Constant Volume Least-Squares Spreadsheet				
	2					
	3		x	у	·····	
	4		Spike (mg/g) l(s+x) =		
	5		[S] _f	signal		
	6		0.00			
			3.12		-	
	8		7.18	25.5		
	9	n an she na a baa ƙwala ƙasar ƙarar a ta ƙasar ƙasar ƙasar 1995 - Angela Angela ƙasar ƙasar ƙasar ƙasar ƙasar ƙasar 1996 - Walan Angela ƙasar ƙasar ƙasar ƙasar ƙasar ƙasar	8.48	00.0		
	10		20.0			
	11		38.2	83.4		
	12					
	13 14					
	14		1 			
	15		LINEST output:			
	in the second	m	1.7776		b	
	17	Sm	0.0449	0.8190	Sb	
	18	R ²	0.9974	1.4246	Sy	
	19	····				
		x-intercept = -b/m =	-8.20906	· · · · · · · · · · · · · · · · · · ·		
	21				1. III. <u>u</u> 1 <u>u</u>	
		<u>n =</u>	6	B22 = COUNT(B6	5:B11)	
		Mean y =	37.40	B23 = AVERAGE	(C6:C11)	
		$\Sigma(x_i - \text{mean } x)^2 =$	1004.7838	B24 = DEVSQ(B6	:B11)	
	25	······				
		Std deviation of				
		x-intercept =	0.62445	·····		
	28	B27 =(C18/ABS(B16))*SORT((1/B	22) + B23^2//B16/	()*P()	

- (a) In cells B20 and B27 of the spreadsheet, the negative x-intercept of the standard addition graph is 8.21 ± 0.62 mg alliin/g garlic.
- (b) Two moles of alliin (FM 177.2) produce one mole of allicin (FM 162.3) in the assay. Therefore, the quantity of allicin in garlic is ½(162.3/177.2)(8.21 ± 0.62 mg/g) = 3.76 ± 0.28 mg allicin/g garlic or 3.8 ± 0.3 mg allicin/g garlic.

5-30. (a)
$$\frac{A_X}{[X]} = F\left(\frac{A_S}{[S]}\right) \Rightarrow \frac{3473}{[3.47 \text{ mM}]} = F\left(\frac{10222}{[1.72 \text{ mM}]}\right) \Rightarrow F = 0.1684$$

(b) $[S] = (8.47 \text{ mM})\left(\frac{1.00 \text{ mL}}{10.0 \text{ mL}}\right) = 0.847 \text{ mM}$
(c) $\frac{A_X}{[X]} = F\left(\frac{A_S}{[S]}\right) \Rightarrow \frac{5428}{[X]} = 0.1684\left(\frac{4431}{[0.847 \text{ mM}]}\right) \Rightarrow [X] = 6.16 \text{ mM}$
(d) The original concentration of [X] was twice as great as the diluted

- (d) The original concentration of [X] was twice as great as the diluted concentration, so [X] = 12.3 mM.
- **5-32.** Data in the following table are plotted in the accompanying graph. If the equation

$$\frac{\text{area of analyte signal}}{\text{area of standard signal}} = F\left(\frac{\text{concentration of analyte}}{\text{concentration of standard}}\right)$$

is obeyed, the graph should be a straight line going through the origin, which it is. The slope, 1.07_{57} , is the response factor. Over the concentration ratio analyte/standard = 0.10 to 1.00, the standard deviation of the response factor in the table is $0.06_{68} = 6.2\%$.

Sample	Concentration ratio C10H8/C10D8	Area ratio C ₁₀ H ₈ /C ₁₀ D ₈	F = area ratio/conc. ratio	
1	0.10	0.101	1.0127	
2	0.50	0.573	1.14 ₆₁	
3	1.00	1.072	1.07 ₂₄	
			mean = 1.07_{57}	
		standard deviation 0.0668		
		relative standard deviation 6.2%		