Chapter 5 Homework

5-16. (a) For the fortification level of $22.2 \mathrm{ng} / \mathrm{mL}$, the mean of the 5 values is 23.6_{6} $\mathrm{ng} / \mathrm{mL}$ and the standard deviation is $5.63 \mathrm{ng} / \mathrm{mL}$.

$$
\begin{aligned}
& \text { Precision }=100 \times \frac{5.63}{23.66}=23.8 \% \\
& \text { Accuracy }=100 \times \frac{23.66-22.2}{22.2}=6.6 \%
\end{aligned}
$$

For the fortification level of $88.2 \mathrm{ng} / \mathrm{mL}$, the mean of the 5 values is 82.4_{8} $\mathrm{ng} / \mathrm{mL}$ and the standard deviation is $11.49 \mathrm{ng} / \mathrm{mL}$.

$$
\text { Precision }=100 \times \frac{11.49}{82.48}=13.9 \%
$$

$$
\text { Accuracy }=100 \times \frac{82.48-88.2}{88.2}=-6.5 \%
$$

For the fortification level of $314 \mathrm{ng} / \mathrm{mL}$, the mean of the 5 values is 302.8 $\mathrm{ng} / \mathrm{mL}$ and the standard deviation is $23.5_{1} \mathrm{ng} / \mathrm{mL}$.

$$
\begin{aligned}
& \text { Precision }=100 \times \frac{23.51}{302.8}=7.8 \% \\
& \text { Accuracy }=100 \times \frac{302.8-314}{314}=-3.6 \%
\end{aligned}
$$

(b) Standard deviation of 10 samples: $s=28.2$; mean blank: $y_{\text {blank }}=45.0$ Signal detection limit $=y_{\text {blank }}+3 s=45.0+(3)(28.2)=129.6$

Concentration detection limit $=\frac{3 s}{m}=\frac{(3)(28.2)}{1.75 \times 10^{9} \mathrm{M}^{-1}}=4.8 \times 10^{-8} \mathrm{M}$
Lower limit of quantitation $=\frac{10 s}{m}=\frac{(10)(28.2)}{1.75 \times 10^{9} \mathrm{M}^{-1}}=1.6 \times 10^{-7} \mathrm{M}$

5-18. Mean $=0.383 \mu \mathrm{~g} / \mathrm{L}$ and standard deviation $=0.0214 \mu \mathrm{~g} / \mathrm{L}$
$\%$ recovery $=\frac{0.383 \mu \mathrm{~g} / \mathrm{L}}{0.40 \mu \mathrm{~g} / \mathrm{L}} \times 100=96 \%$
The measurements are already expressed in concentration units. The concentration detection limit is 3 times the standard deviation $=3(0.0214 \mu \mathrm{~g} / \mathrm{L})=$ $0.064 \mu \mathrm{~g} / \mathrm{L}$.

5-19. The low concentration of Ni-EDTA has a standard deviation of 28.2 counts for 10 measurements. The detection limit is estimated to be

$$
y_{\mathrm{dl}}=y_{\mathrm{blank}}+3 s=45+3(28.2)=129.6 \text { counts }
$$

To convert counts to molarity, we note that a $1.00 \mu \mathrm{M}$ solution gave a net signal of $1797-45=1752$ counts. The slope of the calibration curve is therefore estimated to be

$$
m=\frac{y_{\text {sample }}-y_{\text {blank }}}{\text { sample concentration }}=\frac{1797-45}{1.00 \mu \mathrm{M}}=1.75_{2} \times 10^{9} \frac{\text { counts }}{\mathrm{M}}
$$

The minimum detectable concentration is

$$
\frac{3 s}{m}=\frac{(3)(28.2) \text { counts }}{1.75_{2} \times 10^{9} \text { counts } / \mathrm{M}}=4.8 \times 10^{-8} \mathrm{M}
$$

5-22. Comparison of Lab C with Lab A:
First, use the F test to see if the standard deviations are significantly different: $F_{\text {calculated }}=s_{\mathrm{C}}^{2} / s_{\mathrm{A}}^{2}=0.78^{2} / 0.14^{2}=31_{.0}>F_{\text {table }}=3.88$ (with 2 degrees of freedom for s_{C} and 12 degrees of freedom for s_{A})
Standard deviations are not equivalent, so use the following t test:
Degrees of freedom $=\frac{\left(s_{1}^{2 / n}+s_{1}{ }^{2} / n_{2}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}=\frac{\left(0.142 / 13+0.78^{2} / 3\right)^{2}}{\frac{\left(0.14^{2} / 13\right)^{2}}{13-1}+\frac{\left(0.78^{2} / 3\right)^{2}}{3-1}}=2.03 \approx 2$

$$
t_{\text {calculated }}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt{s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}}}=\frac{|1.59-2.68|}{\sqrt{0.14^{2} / 13+0.78^{2 / 3}}}=2.4_{1}
$$

For 2 degrees of freedom, $t_{\text {table }}=4.303$ for 95% confidence. Since $t_{\text {calculated }}<$ $t_{\text {table }}$, we conclude that the difference between Lab C and Lab A is not significant.

Comparison of Lab C with Lab B:

$F_{\text {calculated }}=s_{\mathrm{C}}^{2} / s_{\mathrm{B}}^{2}=0.78^{2} / 0.56^{2}=1.9_{4}<F_{\text {table }}=4.74$ (with 2 degrees of freedom for s_{C} and 7 degrees of freedom for s_{A}). The standard deviations are not significantly different, so we use the following t test:

$$
\begin{aligned}
& s_{\text {pooled }}=\sqrt{\frac{0.56^{2}(8-1)+0.78^{2}(3-1)}{8+3-2}}=0.61_{6} \\
& t_{\text {calculated }}=\frac{|1.65-2.68|}{0.61_{6}} \sqrt{\frac{8 \cdot 3}{8+3}}=2.4_{7}
\end{aligned}
$$

$t_{\text {table }}=2.262$ for 95% confidence and $8+3-2=9$ degrees of freedom.
$t_{\text {calculated }}>t_{\text {table }}$, so the difference is significant at the 95% confidence level.

It makes no sense to conclude that $\mathrm{Lab} \mathrm{C}[2.68 \pm 0.78$ (3) $]>\mathrm{Lab} \mathrm{B}[1.65 \pm 0.56$ (8)], but Lab C $=\operatorname{Lab} \mathrm{A}[1.59 \pm 0.14$ (13)]. The problem with the comparison of Labs C and A is that the standard deviation of C is much greater than the standard deviation of A and the number of replicates for C is much less than the number of replicates for A . The result is that we used a large composite standard deviation and a small composite number of degrees of freedom. The conclusion is biased by a large standard deviation and a small number of degrees of freedom. I would tentatively conclude that results from Lab C are greater than results from Labs B and A. I would also ask for more replicate results from Lab C. With just 3 replications, it is hard to reach any statistically significant conclusions.
5-25. (a) All solutions were made up to the same final volume. Therefore, we prepare a graph of signal versus concentration of added standard. The line in the graph was drawn by the method of least squares with the following spreadsheet. The x-intercept, 8.72 ppb , is the concentration of unknown in the 10 mL solution. In cell B27 of the spreadsheet (on the next page), we find the standard deviation of the x-intercept to be 0.427 ppm . A reasonable answer is $8.7_{2} \pm 0.4_{3} \mathrm{ppb}$.

(b) Unknown solution volume $=10.0 \mathrm{~mL}$ with $\mathrm{Sr}=8.72 \mathrm{ppb}=8.72 \mathrm{ng} / \mathrm{mL}$. In 10.0 mL , there are $(10 \mathrm{~mL})(8.72 \mathrm{ng} / \mathrm{mL})=87.2 \mathrm{ng}$. Solution was made from 0.750 mg of tooth enamel. $\mathrm{Sr}(\mathrm{ppm})$ in tooth enamel is

$$
\begin{aligned}
\text { Concentration (ppm) } & =\frac{\text { mass of } \mathrm{Sr}}{\text { mass of enamel }} \times 10^{6} \\
& =\frac{87.2 \times 10^{-9} \mathrm{~g}}{0.750 \times 10^{-3} \mathrm{~g}} \times 10^{6}=116 \mathrm{ppm}
\end{aligned}
$$

(c) Relative uncertainty of intercept is $100 \times 0.43 / 8.72=4.9 \%$, which leads to a 4.9% uncertainty in the concentration of Sr in the tooth enamel. 0.049×116 $\mathrm{ppm}=5.7 \mathrm{ppm}$. Final answer: $116 \pm 6 \mathrm{ppm}$.
(d) Student's t for $n-2=5-2=3$ degrees of freedom and 95% confidence is 3.182. We found standard deviation $=5.7 \mathrm{ppm}$. 95% confidence interval is $\pm t s=(3.182)(5.7 \mathrm{ppm})=18.1 \mathrm{ppm}$. Answer: $116 \pm 18 \mathrm{ppm}$.

5-28.

	A	B	C	D
1	Standard Addition Constant Volume Least-Squares Spreadsheet			
2				
3		x	y	
4		Spike (mg / g)	$1(\mathrm{~s}+\mathrm{x})=$	
5		[S] ${ }_{\text {f }}$	signal	
6		0.00	15.6	
7		3.12	21.1	
8		7.18	25.5	
9		8.48	30.0	
10		20.0	48.8	
11		38.2	83.4	
12				
13	B16:D18 = LINEST(C6:C11,B6:B11,TRUE,TRUE)			
14				
15	LINEST output:			
16	m	1.7776	14.5928	b
17.	s_{m}	0.0449	0.8190	s_{b}
18	R^{2}	0.9974	1.4246	Sy
19				
20	x -intercept $=-\mathrm{b} / \mathrm{m}=$	-8.20906		
21				
22	$n=$	6	B22 $=$ COUNT ${ }^{\text {(B6 }}$	6:B11)
23	Mean $\mathrm{y}=$	37.40	B23 = AVERAGE	(C6:C11)
24	$\Sigma\left(\mathrm{x}_{\mathrm{i}}-\text { mean } \mathrm{x}\right)^{2}=$	1004.7838	$\mathrm{B} 24=\mathrm{DEVSQ}(\mathrm{B6}$	(B11)
25				
26	Std deviation of			
27	x -intercept $=$	0.62445		
28	B27 $=($ C18/ABS $($ B16 $)$	*SQRT ($1 / \mathrm{B} 2$	22) $+\mathrm{B} 23^{\wedge} 2 /\left(\mathrm{B} 16^{\wedge}\right.$	2*B24))

(a) In cells B20 and B27 of the spreadsheet, the negative x-intercept of the standard addition graph is $8.21 \pm 0.62 \mathrm{mg}$ alliin $/ \mathrm{g}$ garlic.
(b) Two moles of alliin (FM 177.2) produce one mole of allicin (FM 162.3) in the assay. Therefore, the quantity of allicin in garlic is $1 / 2(162.3 / 177.2)(8.21$ $\pm 0.62 \mathrm{mg} / \mathrm{g})=3.76 \pm 0.28 \mathrm{mg}$ allicin $/ \mathrm{g}$ garlic or $3.8 \pm 0.3 \mathrm{mg}$ allicin $/ \mathrm{g}$ garlic.

5-30. (a) $\frac{A_{\mathrm{X}}}{[\mathrm{X}]}=F\left(\frac{A_{\mathrm{S}}}{[\mathrm{S}]}\right) \Rightarrow \frac{3473}{[3.47 \mathrm{mM}]}=F\left(\frac{10222}{[1.72 \mathrm{mM}]}\right) \Rightarrow F=0.1684$
(b) $[\mathrm{S}]=(8.47 \mathrm{mM})\left(\frac{1.00 \mathrm{~mL}}{10.0 \mathrm{~mL}}\right)=0.847 \mathrm{mM}$
(c) $\frac{A_{\mathrm{X}}}{[\mathrm{X}]}=F\left(\frac{A_{\mathrm{S}}}{[\mathrm{S}]}\right) \Rightarrow \frac{5428}{[\mathrm{X}]}=0.1684\left(\frac{4431}{[0.847 \mathrm{mM}]}\right) \Rightarrow[\mathrm{X}]=6.16 \mathrm{mM}$
(d) The original concentration of [X] was twice as great as the diluted concentration, so $[\mathrm{X}]=12.3 \mathrm{mM}$.

5-32. Data in the following table are plotted in the accompanying graph. If the equation

$$
\frac{\text { area of analyte signal }}{\text { area of standard signal }}=F\left(\frac{\text { concentration of analyte }}{\text { concentration of standard }}\right)
$$

is obeyed, the graph should be a straight line going through the origin, which it is. The slope, 1.0757 , is the response factor. Over the concentration ratio analyte/standard $=0.10$ to 1.00 , the standard deviation of the response factor in the table is $0.06_{68}=6.2 \%$.

Sample	Concentration ratio $\mathrm{C}_{10} \mathrm{H}_{8} / \mathrm{C}_{10} \mathrm{D}_{8}$	Area ratio $\mathrm{C}_{10} \mathrm{H}_{8} / \mathrm{C}_{10} \mathrm{D}_{8}$	$F=$ area ratio/conc. ratio
1	0.10	0.101	1.01_{27}
2	0.50	0.573	1.14_{61}
3	1.00	1.072	1.07_{24}
			mean $=1.07_{57}$
		relative standard deviation 0.06_{68}	

