Chapter 4 Problems

4-3. (a) Mean $=\frac{1}{8}(1.52660+1.52974+1.52592+1.52731+1.52894+$

$$
1.52804+1.52685+1.52793)=1.52767
$$

(b) Standard deviation $=$

$$
\sqrt{\frac{(1.52660-1.52767)^{2}+\cdots+(1.52793-1.52767)^{2}}{8-1}}=0.00126
$$

(c) Variance $=(0.00126)^{2}=1.59 \times 10^{-6}$
(d) Significant figures: $\bar{x} \pm s=1.527_{7} \pm 0.001_{3}$ or 1.528 ± 0.001.

4-4. (a) 1005.3 hours corresponds to $z=(1005.3-845.2) / 94.2=1.700$.
In Table 4-1, the area from the mean to $z=1.700$ is 0.455 4. The area above $z=1.700$ is therefore $0.5-0.4554=0.0446$.
(b) 798.1 corresponds to $z=(798.1-845.2) / 94.2=-0.500$.

The area from the mean to $z=-0.500$ is the same as the area from the mean to $z=+0.500$, which is 0.1915 in Table 4-1.
901.7 corresponds to $z=(901.7-845.2) / 94.2=0.600$.

The area from the mean to $z=0.600$ is 0.2258 in Table 4-1.
The area between 798.1 and 901.7 is the sum of the two areas:
$0.1915+0.2258=0.4173$
(c) The following spreadsheet shows that the area from $-\infty$ to 800 h is 0.3157 and the area from $-\infty$ to 900 h is 0.719 6. Therefore, the area from 800 to 900 h is $0.7196-0.3157=0.4040$.

	A	B	C
1	Mean $=$	Std dev $=$	
2	845.2	94.2	
3			
4	Area from $-\infty$ to $800=$	0.3157	
5	Area from $-\infty$ to $900=$	0.7196	
6	Area from 800 to 900	0.4040	
7			
8	C4 $=$ NORMDIST $(800, \$ A \$ 2, \$ B \$ 2$, TRUE $)$		
9	C5 $=$ NORMDIST $(900, \$ A \$ 2, \$ B \$ 2$, TRUE $)$		
10	C6 $=$ C5-C4		

4-9. Since the bars are drawn at a 50% confidence level, 50% of them ought to include the mean value if many experiments are performed. 90% of the 90% confidence bars must reach the mean value if we do enough experiments. The 90% bars must be longer than the 50% bars because more of the 90% bars must reach the mean.

4-11. $\quad \bar{x}=0.14_{8}, \quad s=0.03_{4}$

$$
\begin{aligned}
& 90 \% \text { confidence interval }=0.14_{8} \pm \frac{(2.015)\left(0.03_{4}\right)}{\sqrt{6}}=0.14_{8} \pm 0.02_{8} \\
& 99 \% \text { confidence interval }=0.14_{8} \pm \frac{(4.032)\left(0.03_{4}\right)}{\sqrt{6}}=0.14_{8} \pm 0.05_{6}
\end{aligned}
$$

4-13. (a) $\mathrm{dL}=\operatorname{deciliter}=0.1 \mathrm{~L}=100 \mathrm{~mL}$
(b) $F_{\text {calculated }}=\left(0.05_{3} / 0.04_{2}\right)^{2}=1.59<F_{\text {table }}=6.26$ (for 5 degrees of freedom \cdot in the numerator and 4 degrees of freedom in the denominator).
Since $F_{\text {calculated }}<F_{\text {table }}$, we can use the following equations:
$s_{\text {pooled }}=\sqrt{\frac{0.53^{2}(5)+0.42^{2}(4)}{6+5-2}}=0.48_{4}$
$t=\frac{|14.57-13.95|}{0.484} \sqrt{\frac{6 \cdot 5}{6+5}}=2.12<2.262$ (listed for 95% confidence and 9 degrees of freedom). The results agree and the trainee should be released.

4-14.

	A	B	C	D	E	F
1	Comparison of two methods					
2						
3	Sample	Method 1	Method 2	d_{i}		
4	A	0.88	0.83	0.05	$=\mathrm{B} 4-\mathrm{C} 4$	
5	B	1.15	1.04	0.11		
6	C	1.22	1.39	-0.17		
7	D	0.93	0.91	0.02		
8	E	1.17	1.08	0.09		
9	F	1.51	1.31	0.20		
10			mean $=$	0.050	= AVERAGE(D4:D9)	
11			stdev $=$	0.124	$=$ STDEV(D4:D9)	
12			$\mathrm{t}_{\text {calculated }}=$	0.987	$=\mathrm{D} 10 / \mathrm{D} 11 *$ SQRT(6)	
13			$\mathrm{t}_{\text {table }}=$	2.571	$=$ TINV(0.05,5)	

$t_{\text {calculated }}=0.987<2.571$ (Student's t for 95% confidence and 5 deg of freedom) The difference is not significant.

4-16. $\quad F_{\text {calculated }}=s_{2}{ }^{2 /} / s_{1}^{2}=(0.039)^{2} /(0.025)^{2}=2.43$
$F_{\text {table }}=9.28$ for 3 degrees of freedom in the numerator and denominator Since $F_{\text {calculated }}<F_{\text {table }}$, the difference in standard deviation is not significant and we use Equations 4-8 and 4-9.

$$
s_{\text {pooled }}=\sqrt{\frac{s_{1}^{2}\left(n_{1}-1\right)+s_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}}=\sqrt{\frac{0.025^{2}(4-1)+0.039^{2}(4-1)}{4+4-2}}=0.0328
$$

$t_{\text {calculated }}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{s_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}}=\frac{|1.382-1.346|}{0.0328} \sqrt{\frac{4 \cdot 4}{4+4}}=1.55$
$t_{\text {table }}(4+4-2=6$ degrees of freedom $)=2.447$
Since $t_{\text {calculated }}<t_{\text {table }}$, the difference is not significant.
4-22. (a) Rainwater:
$F_{\text {calculated }}=(0.008 / 0.005)^{2}=2.56<F_{\text {table }}=4.53$ (for 4 degrees of freedom in the numerator and 6 degrees of freedom in the denominator). Since
$F_{\text {calculated }}<F_{\text {table }}$, we use the following equations:
$s_{\text {pooled }}=\sqrt{\frac{0.005^{2}(6)+0.008^{2}(4)}{7+5-2}}=0.006_{37}$
$t_{\text {calculated }}=\frac{0.069-0.063}{0.00637} \sqrt{\frac{7 \cdot 5}{7+5}}=1.61<t_{\text {table }}=2.228$
The difference is not significant.
Drinking water:
$F_{\text {calculated }}=(0.008 / 0.007)^{2}=1.31<F_{\text {table }}=6.39$ (for 4 degrees of
freedom in the numerator and 4 degrees of freedom in the denominator).
Since $F_{\text {calculated }}<F_{\text {table }}$, we use the following equations:
$s_{\text {pooled }}=\sqrt{\frac{0.007^{2}(4)+0.008^{2}(4)}{5+5-2}}=0.007_{52}$
$t=\frac{0.087-0.078}{0.007_{52}} \sqrt{\frac{5 \cdot 5}{5+5}}=1.89<2.306$. The difference is not significant.
(b) Gas chromatography:

$$
\begin{aligned}
& s_{\text {pooled }}=\sqrt{\frac{0.005^{2}(6)+0.007^{2}(4)}{7+5-2}}=0.005_{88} \\
& t=\frac{0.078-0.069}{0.005} \sqrt{\frac{7 \cdot 5}{7+5}}=2.61>2.228 . \text { The difference is significant. }
\end{aligned}
$$

Spectrophotometry:

$$
\begin{aligned}
& s_{\text {pooled }}=\sqrt{\frac{0.008^{2}(4)+0.008^{2}(4)}{5+5-2}}=0.008_{00} \\
& t=\frac{0.087-0.063}{0.008_{00}} \sqrt{\frac{5 \cdot 5}{5+5}}=4.74>2.306 . \text { The difference is significant. }
\end{aligned}
$$

4-24. \quad Slope $=-1.29872 \times 10^{4}\left(\pm 0.0013190 \times 10^{4}\right)$

$$
=-1.299(\pm 0.001) \times 10^{4} \text { or }-1.298_{7}\left(\pm 0.001_{3}\right) \times 10^{4}
$$

Intercept $=256.695(\pm 323.57)=3(\pm 3) \times 10^{2}$
4-29. Hopefully, the negative value is within experimental error of 0 . If so, no detectable analyte is present. If the negative concentration is beyond experimental error, there is something wrong with your analysis. The same is true for a value above 100% of the theoretical maximum concentration of an analyte. Another possible way to get values below 0 or above 100% is if you extrapolated the calibration curve past the range covered by standards, and the curve is not linear.
4-30. Corrected absorbance $=0.264-0.095=0.169$
Equation of line: $0.169=0.01630 x+0.0047 \Rightarrow x=10.1 \mu \mathrm{~g}$

4-31. (a) $x=\frac{y-b}{m}=\frac{2.58-1.3_{5}}{0.615}=2.00$

$$
\begin{aligned}
& \bar{y}=(2+3+4+5) / 4=3.5 \quad \bar{x}=(1+3+4+6) / 4=3.5 \\
& \Sigma\left(x_{\mathrm{i}}-\bar{x}\right)^{2}=(1-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(6-3.5)^{2}=13.0 \\
& s_{\mathrm{X}}=\frac{s_{y}}{|m|} \sqrt{\frac{1}{k}+\frac{1}{n}+\frac{(y-\bar{y})^{2}}{m^{2} \sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}}} \\
&=\frac{0.19612}{|0.61538|} \sqrt{\frac{1}{1}+\frac{1}{4}+\frac{(2.58-3.5)^{2}}{(0.61538)^{2}(13.0)}}=0.38
\end{aligned}
$$

Answer: $2.0_{0} \pm 0.3_{8}$
(b) For $k=4$ replicate measurements,

$$
\begin{aligned}
s_{x} & =\frac{s y}{|m|} \sqrt{\frac{1}{k}+\frac{1}{n}+\frac{(y-\bar{y})^{2}}{m^{2} \sum\left(x_{\mathrm{i}}-\bar{x}\right)^{2}}} \\
& =\frac{0.19612}{|0.61538|} \sqrt{\frac{1}{4}+\frac{1}{4}+\frac{(2.58-3.5)^{2}}{(0.61538)^{2}(13.0)}}=0.26
\end{aligned}
$$

Answer: $2.0_{0} \pm 0.2_{6}$

4-33. (a)

(b) Corrected signal $=154.0-9.0=145.0 \mathrm{mV}$
(c) Cells B23 and B24 give $\left[\mathrm{CH}_{4}\right]=0.19_{2}\left(\pm 0.01_{4}\right) \mathrm{vol} \%$

4-36. For 8 degrees of freedom, $t_{90} \%=1.860$ and $t_{99 \%}=3.355$.
90% confidence interval: $15.2_{2}\left(\pm 1.860 \times 0.4_{6}\right)=15.2_{2} \pm 0.8_{6} \mu \mathrm{~g}$
99% confidence interval: $15.2_{2}(\pm 3.355 \times 0.46)=15.2 \pm 1.5 \mu \mathrm{~g}$

