Complete the following problems. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

1. Without doing any detailed calculations, indicate which of the following electronic transitions in a hydrogen atom results in the emission of light of the longest wavelength. (a) $n=4$ to $n=3$, (b) $n=2$ to $n=1$, (c) $n=$ 6 to $n=1$, (d) $n=3$ to $n=2$. Justify your answer. (8 pts)

Since energy is inversely proportional to wavelength, the longest wavelength transition corresponds to the lowest energy. So, of our four choices, which should have the lowest energy? It might be easiest to think of the energy level diagram at the right. The $\mathrm{n}=6$ to $\mathrm{n}=1$ transition would have the largest energy, because the difference between n is the greatest. The other transitions have the same difference in n , so we have to look harder. As n increases, the separation between successive values for n decreases, meaning the levels is closer in energy.
Therefore, we would expect the $\mathrm{n}=4$ to $\mathrm{n}=3$ transition to have the lowest energy. You could also do a calculation to confirm this using the following equation for the four combinations of n.

$$
\Delta \mathrm{E}=-\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\text {final }}^{2}}-\frac{1}{\mathrm{n}_{\text {initial }}^{2}}\right)
$$

2. Sketch an example of each of the two orbitals below. For each orbital indicate the number of radial and angular nodes. (8 pts)

These are examples of the types of representations I would expect to see.

Orbital	$\mathrm{n}=3, \ell=0$	$\mathrm{n}=3, \ell=1$
Sketch	This is a 3s orbital	This is a 3p orbital

3. Using spectroscopic notation, write the electron configuration for the following species. Indicate the number of unpaired electrons in each. (3 points each)
a. phosphorous

electron configuration:	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$ or $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
\# of unpaired electrons:	3

b. bromine

electron configuration:	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$ or $[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{5}$
\# of unpaired electrons:	1

c. uranium

electron configuration:	$[\mathrm{Rn}] 7 \mathrm{~s}^{2} 5 \mathrm{f}^{4}$ or $[\mathrm{Rn}] 7 \mathrm{~s}^{2} 6 \mathrm{~d}^{1} 5 f^{3}$
$\#$ of unpaired electrons:	4

Possibly Useful Information

$\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$	$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\mathrm{R}_{\mathrm{H}}=2.179 \times 10^{-18} \mathrm{~J} /$ atom
$\mathrm{E}=\mathrm{h} \nu$	$v \lambda=\mathrm{c}$	$\Delta \mathrm{E} \cdot \Delta(\mathrm{mv})>\mathrm{h}$
$\mathrm{H} \psi=\mathrm{E} \psi$	$\mathrm{E}=-\frac{\mathrm{R}_{H}}{\mathrm{n}^{2}}$	$\Delta \mathrm{E}=-\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\text {final }}^{2}}-\frac{1}{\mathrm{n}_{\text {initial }}^{2}}\right)$

*Lanthanide series	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.115 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.908 \end{gathered}$	$\begin{gathered} \text { 60 } \\ \mathbf{N d} d \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \end{gathered}$	$\begin{gathered} 62 \\ \substack{62 \\ \hline 150.36} \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.965 \end{gathered}$	$\begin{gathered} \text { 64 } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.925 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} \text { 67 } \\ \text { Ho } \\ 164.930 \end{gathered}$	$\begin{gathered} 68 \\ \mathrm{Er} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.934 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 174.967 \end{gathered}$
${ }^{\dagger}$ Actinide series	$\begin{gathered} \text { 90 } \\ \text { Th } \\ 232.038 \end{gathered}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 231.036 \end{gathered}$	$\begin{gathered} 92 \\ \stackrel{9288.029}{\mathbf{U}} \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ 237.048 \end{gathered}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ (244) \end{gathered}$	$\begin{gathered} 95 \\ \mathrm{Am} \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{Cm} \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\stackrel{98}{\mathrm{Cf}}$	$\begin{gathered} 99 \\ \text { Es } \\ \text { (252) } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & \text { (257) } \end{aligned}$	$\begin{aligned} & 101 \\ & \text { Md } \\ & (258) \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & \text { (259) } \end{aligned}$	$\begin{gathered} 103 \\ \mathbf{1 0} \\ { }_{(262)} \end{gathered}$

Copyright © 2007 Pearson Prentice Hall, Inc.

