

Two "New" Complementary Theories:

- 1. Valence Bond Theory (Linus Pauling)
- 2. Molecular Orbital Theory (Robert Mulliken)

Valence Bond Theory

- Three main points:
 - 1. Covalent bonding is a result of **overlap** of atomic orbitals present in each of the components of the bond.
 - 2. These overlapping orbitals must contain two e⁻ of opposite spin.
 - 3. As a result of overlap, the probability of finding electrons in the space between the nucleii is increased.

"Generalized" MO Diagrams						
	r [*] _{2p}					
π^*_{2p} .	π [*] _{2p}					
	72p				**	
π_{2p} .	π _{2p}		• •	** **	! ↓ ! ↓	
	r [*] _{2s}	**	ŧ.	++	••	
	Zs III	t+ Be ₂	** B ₂	++ C ₂	N2	
Bond on	der 1	0	1	2	3	
Magnetis	m Dia- magnetic	-	Para- magnetic	Dia- magnetic	Dia- magnetic	
	σ^{*}_{2p}			**		
	$\pi_{2p^*}^* \pi_{2p}^*$	÷ †	÷• ••	** **		
	π_{2p}, π_{2p}	••	†÷ †÷	••		
	σ_{2p}	++	**	÷÷		
	σ^*_{2s}	**	••	÷.		
	σ_{2s}	†† 0 ₂	•• F2	++ Ne ₂		
	Bond order	2	1	0		
	Magnetism	Para- magnetic	Dia- magnetic	-		20
	Copyright ©	2007 Pearso	on Prentice	Hall, Inc.		

