Na	nme:		Score:/100				
Pa	art I. Multiple choice. Write	the letter of the correct answer for eac	h problem. 3 points each				
1.	Which of the following contains the greatest number of moles of O?						
	A) 2.3 mol H ₂ O B) 1.2 mol H ₂ O ₂	C) 0.9 mol NaNO ₃ D) 0.5 mol Ca(NO ₃) ₂	Answer				
2.	Argon gas is enclosed in a 10.2 L tank at 12.01 atm. Which of the following is a reasonable value for the pressure when the argon is transferred to a 30.0 L tank at constant temperature?						
	A) 3.0 atm B) 4.0 atm	C) 36.0 atmD) 120.0 atm	Answer				
3.	Which intermolecular force is most significant in accounting for the high boiling point of water relative to other substances of similar molar mass?						
	A) dispersion forcesB) dipole-induced dipole inC) hydrogen bonding interaD) ion-dipole interactions		Answer				
4.	The fundamental law that energy cannot be created or destroyed is:						
	A) The first law of thermodB) The second law of thermodC) The third law of thermodD) The law of the jungle	nodynamics	Answer				
5.	Which of the following pairs of substances is <u>least likely</u> to form a solution?						
	A) An ionic compound in aB) An ionic compound in aC) A nonpolar compound iD) A polar compound in a	n polar solvent n a nonpolar solvent	Answer				
6.	That energy goes spontaneouthe:	usly from more useful forms to less use	eful forms is a statement of				
	A) first law of thermodynamB) second law of thermodynamC) third law of thermodynamD) standard law of energy of	rnamics amics	Answer				
7.	According to the kinetic-mol total energy	ecular theory of gases, in collisions be	tween gas particles, the				
	A) decreases slightly.B) decreases considerably.	C) increases slightly.D) remains the same.	Answer				
8.	One 1.00L flask (flask A) contains CO gas and another 1.00 L flask (flask B) contains CO_2 gas. If both flasks are at the same temperature and pressure, flask A contains						
		number of molecules than flask B. number of molecules than flask B.	Answer				

9.	Molecules are farthest apart in a(n)					
	A) ionic solidB) liquid	C) covalent solidD) gas	Answer			
10.	onsider the reaction below. How many moles of CO_2 are produced if 75 moles of O_2 react? $2 C_8H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O$					
	A) 50 B) 100	C) 48 D) 32	Answer			
11.	Which of the following is likely to require the greatest input of energy to melt, therefore having the highest melting point?					
	A) C ₆ H ₁₂ O ₆ B) N ₂ O	C) NaCl D) Ar	Answer			
12.	of CH ₃ OH, H ₂ , HF, and H ₂ O, which molecule(s) can participate in hydrogen bonding?					
	A) H ₂ only B) H ₂ O only	C) CH ₃ OH, HF, and H ₂ O D) CH ₃ OH, H ₂ , HF, and H ₂ O	Answer			
13.	Reactions tend to proceed faster at h	igher temperatures because				
	A) there are more molecules availaB) reactant molecules collide moreC) the energy of the products has iD) the pressure in the reaction vess	e frequently. ncreased.	Answer			
14.	How many grams of sulfur are in 0.2	20 mol of $Cr(SO_4)_3$?				
	A) 3.20 g B) 6.40 g	C) 12.8 g D) 19.2 g	Answer			
15.	In the reaction $N_2(g) + 3H_2(g) \rightarrow 2N$ and pressure, what volume of ammo excess hydrogen?	=	-			
	A) 2.25 L B) 4.50 L	C) 9.00 L D) 13.5 L	Answer			
Paı	t II. Complete each of the following	g. Point values are noted by each que	estion.			
16.	Complete the following table. (6 poi	nts)				
		8.14 mol $C_5H_{11} =$	molecules C ₅ H ₁₁			

17. Match the term with its definition. (8 points)						
thermodynamics	A.	a process that releases heat energy				
	B.	a process that absorbs heat energy				
molarity	C.	a thermodynamic concept that does not depend on pathway (or mechanism).				
solute	D.	the substance that is dissolved in another substance to form a				
exothermic	E.	solution the substance that dissolves another substance to form a				
electronegativity	F	solution energy transferred as heat				
joule	G.	concentration in terms of moles per liter				
anth alms	_	a quantity of energy				
enthalpy	I.	the study of energy and its changes the tendency for an atom in a bond to attract electrons to				
state function	J.	itself.				
alloy formation. How points)	v ma	any grams of NaOH are present in 15 mL of 3.0 M NaOH? (6				
19. How does the stateme (6 points)	ent "	'you can't break even" relate to the second law of thermodynamics?				
• 1 1		250 g of an aqueous solution that is 4.50% glucose ($C_6H_{12}O_6$) by solid glucose? (6 points)				

- **Part III.** Complete 3 of the following 4 problems. Clearly mark the problem you do not want graded. Each problem is worth eight (8) points. You must show you work on calculations to receive partial credit. Report numerical results to the correct number of significant figures and with the appropriate units.
- 21. Oxygen gas (O₂) and nitrogen gas (N₂) can react to form nitrogen dioxide. What mass of oxygen is needed to react with 1.50 grams nitrogen in this process?

22. Calculate the amount of energy that is involved when 1 mol of nitrogen gas reacts with 3 mol hydrogen gas to produce 2 mol ammonia gas, given the information below. (*Hint: start with a Lewis structure for each compound.*)

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

Bond	Bond Energy	
	(kJ/mol)	
N-N	163	
N=N	418	
N≡N	964	
N-H	391	
Н-Н	432	

23. At a temperature of -100°C, tetrafuluoromethane (CF₄) is a gas, while water is a solid. Use your understanding of the structure of these two compounds to explain this difference in their physical properties.

- 24. Nitroglycerin, C₃H₅(ONO₂)₃, is a contact explosive that undergoes a rapid decomposition to form carbon dioxide, water vapor, nitrogen gas and oxygen gas.
 - a. Balance the reaction for the decomposition of nitroglycerin. I've given you a coefficient of 4 for nitroglycerin as a starting point.

$$4 C_{3}H_{5}(ONO_{2})_{3}(s) \rightarrow \underline{\hspace{1cm}} CO_{2}(g) + \underline{\hspace{1cm}} H_{2}O(g) + \underline{\hspace{1cm}} N_{2}(g) + \underline{\hspace{1cm}} O_{2}(g)$$

- b. What is the molar mass of nitroglycerin?
- c. If 20.0 grams of nitroglycerin decomposes, how many total moles of gas are produced?
- d. Assuming the 20.0 grams of nitroglycerin from <u>part c</u> decomposes in a closed metal pipe with a volume of 0.200 L at a temperature of 5000°C (typical for nitroglycerin), what will the pressure be inside the pipe?

% by mass = $\frac{\text{g component}}{100 \text{ g mixture}}$	R = 0.0821 (L atm)/(mol K)	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$
At STP, $P = 1$ atm, $T = 25^{\circ}C$	$K = {}^{\circ}C + 273.15$	$\frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2}$	PV=nRT
Avogadro's number: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$	d = m/v	$P_1V_1 = P_2V_2$	