Chem 131 Exam 2, Ch 11, 12, 26 100 Points Name_____ February 29, 2012

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. The compound SF₄ has a see-saw molecular geometry. How would valence bond theory describe the hybridization of the sulfur atom?
- a. sp^2
b. sp^3
c. sp^3d
d. sp^3d^2
e. sp^2d^2 Answer _____2. The figure below is a representation of what type of orbital?a. σ bonding molecular orbital
b. σ antibonding molecular orbital
c. π bonding molecular orbital
d. π antibonding molecular orbitalAnswer _____
 - e. sp³ hybrid orbital

Part I: Complete all of problems 3-6

- 3. Define <u>three</u> of the following in a maximum of three sentences per item: (12 points)
 - a. functional group:
 - b. hybrid orbital:
 - c. triple point:
 - d. unit cell:

4. Draw the structure of any compound that contains an *amine* and an *ester* and has the molecular formula C₄H₉NO₂. (6 points)

5. Match each compound below to its boiling point. Clearly justify your decision; no credit will be given without a clear justification of your reasoning. (14 points)

methyl ethyl ether (CH ₃ CH ₂ OCH ₃), mm = 60.1 g/mol	i.	97.2° C
n-propanol (CH ₃ CH ₂ CH ₂ OH), mm= 60.1 g/mol	ii.	10.8° C
n-butane (CH ₃ CH ₂ CH ₂ CH ₃), mm = 58.1 g/mol	iii.	-0.5° C
propylamine ($CH_3CH_2CH_2NH_2$), mm = 59.1 g/mol	iv.	48.5° C
n n c	nethyl ethyl ether (CH ₃ CH ₂ OCH ₃), mm = 60.1 g/mol n-propanol (CH ₃ CH ₂ CH ₂ OH), mm= 60.1 g/mol n-butane (CH ₃ CH ₂ CH ₂ CH ₃), mm = 58.1 g/mol propylamine (CH ₃ CH ₂ CH ₂ NH ₂), mm = 59.1 g/mol	nethyl ethyl ether (CH ₃ CH ₂ OCH ₃), mm = 60.1 g/mol i. n-propanol (CH ₃ CH ₂ CH ₂ OH), mm= 60.1 g/mol ii. n-butane (CH ₃ CH ₂ CH ₂ CH ₃), mm = 58.1 g/mol iii. propylamine (CH ₃ CH ₂ CH ₂ NH ₂), mm = 59.1 g/mol iv.

6. The starship *Enterprise* is powered by dilithium (Li₂). Based on *molecular orbital theory*, should Li₂ be a stable molecule? Justify your answer with a MO diagram. (10 points)

7. When drawing Lewis structures, we run into problems with compounds like ozone and benzene. With compounds like these, we have to invoke the concept of resonance and realize that the Lewis approach does provide a realistic picture of the electron distribution in these compounds. Molecular orbital theory does not have this same shortcoming. What fundamental assumption limits Lewis (and valence bond) theory and how does MO theory avoid this problem? (10 points)

Part II. Answer three (3) of problems 8-11. Clearly mark the problem you do not want graded. 14 points each.

8. Many organic functional groups contain an oxygen atom double-bonded to a carbon, as shown at the right. Using *valence bond theory*, describe how the double bond is formed between the <u>carbon</u> and the <u>oxygen</u>. Indicate which orbitals on each atom participate and account for all electrons shared between the C and O atoms. Drawings may be useful in your description.

9. Silver forms a face-centered cubic structure as a solid. If the density of silver is 10.6 g/cm³, what is the atomic radius of solid silver, in picometers (1 pm = 10^{-12} m)?

- 10. Answer the following questions regarding the nitric oxide, NO:
 - a. Complete the MO diagram below for NO. You may assume that the distribution of molecular orbitals is similar to that in O₂. (6 points)

b. What is the bond order for NO? (2 points)

- c. Is NO paramagnetic? Why or why not? (3 points)
- d. Would you expect the NO⁺ ion to be more or less stable than NO? Why? (3 points)

11. Answer the following regarding warfarin, an anticoagulant also known as coumadin. Note: the two unshared electron pairs on each oxygen have been omitted for clarity.

- a. Circle and name three functional groups in the compound. (4 points)
- b. What is the molecular formula for warfarin? (2 points)
- c. How many sigma bonds are there in warfarin? (2 points)
- d. How many pi bonds? (2 points)
- e. Identify the hybridization of each of the atoms noted below: (4 points)

Carbon a: _	
Carbon <i>b</i> : _	
Oxygen d:	
Carbon e: _	

Possibly Useful Information

$a^2 + b^2 = c^2$	$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$	henway = 2 to 3 pounds
0 2	Ø - Ø	2
18 8A 8A 8A 8A 4.0026 10 8 0 Ne 20.179	Ar 39,944 36 Kr 83,80 83,80 54 754 131,2 131,2 131,2 (222)	71 Lu 174.96 174.96 103 Lr (262)
17 7A F 18.9984 17	CI 35.4527 35.4527 35 Br 79.904 I 126.904 85 At (210)	70 Yb 173.04 173.04 No (259)
16 6A 8 0 15,9994 16	S 32.0666 32.0666 32.0666 34 55 55 52 78.96 78.96 127.60 127.60 127.60 (209)	69 Tm 168.934 101 Md (258)
15 5A N 15 15	P 30.9738 33 33 As 74.9216 51 51 51 51 51 83 83 83 83 83 83 83 83 83	68 Er 167.26 100 Fm (257)
14 4A 6 6 12.011 14	Si 28.0855 32 Ge 50 50 50 118.710 118.710 Pb Pb Pb	67 Ho 164.930 99 ES (252)
13 3A 10.811 11.811	Al 26.9815 31 Ga 69.723 69.723 69.723 114.818 81 114.818 81 71 71 204.383	66 Dy 162.50 98 Cf (251)
2	1.2 2.B 3.0 5.39 65.39 65.39 65.39 65.39 65.39 65.39 80 Hg Hg Hg	65 Tb 97 Bk (247) lall, Inc
	11 1B 29 Cu 63.546 63.546 63.546 107.868 79 79 79 79 79 79 1011 111 111 111 111 111 111 111 111 1	64 Gd 157.25 157.25 96 Cm (247) (247)
0	LO 28 88.693 58.693 58.693 78 78 78 78 78 78 78 78 78 78 78 78 78	63 Eu 151.965 95 Am (243) 243)
σ	γ 8B -8B 27 Co Ss.9332 45 Rh Inc.906 102.906 Int 109 Mt 109 Mt	62 Sm 150.36 94 Pu (244) 7 Pears
x	O 26 Fe 55.847 85.847 101.07 76 OS 101.07 1108 1108 108 HS	61 Pm (145) 93 Np 237.048 237.048
L.	/ 7B 84.9381 84.9381 75 84.9381 84.307 75 86.207 1107 1107 1107 1107 1107 1107 1107 1	60 Nd 144.24 U 238.029 ppyright
Le la	0 6B 24 Cr 131.9961 42 95.94 95.94 95.94 95.94 183.84 183.84 106 Sg Sg	59 Pr 91 Pa 231.036 231.036
LC	5B 23 V 5B 5B 5B 50.9415 7 80.9415 73 73 73 73 73 73 73 73 73 73 73 73 73	58 Ce 90 Th 232.038
7	4 4B 4B 22 11i 11i 11i 11i 11i 11i 11i 11i 11i	
c	3B 21 Sc Sc 39 44.9559 38.9059 57 57 38.9059 88 38.9059 57 57 57 227.028	series
2 2A 4 8 6 01218 12	Mg 20 20 20 20 40.078 38 87.62 87.62 88 87.62 1 88 88 88 88 88 88 88 88 88 88 82 26.025 2	nanide nide ser
1 1 1 1 1 1 1 1 1 1 1	Na 19 K 39,0983 37 85,4678 85,4678 85,4678 85,4678 132,905 1 87 Fr (223) 2 2	*Lant]