Spontaneity, Entropy and Free Energy

Spontaneous ≠ Fast

Thermodynamics vs Kinetics

Primary goal of thermodynamics: Predict the *tendency* for a reaction to occur.

- Compare reactants and products

1

Entropy

So far we have discussed the use of Enthalpy (ΔH) for learning something about the tendency of a reaction to release or require energy as heat <u>if</u> it were to proceed as written.

 ΔH isn't the whole story. We also need to consider another factor, **Entropy (S)**. The combination of Enthalpy and Entropy will help us deal with the <u>if</u>.

Entropy, "disorder", and probability:

$$S = k_B InW$$
$$k_B = R/N_A$$

For complex systems, determining S is a challenge.

• Focus on entropy *changes*, $\Delta S = q_{rev}/T$

Entropy

Entropy is a critical component of the Laws of Thermodynamics:

- 1st Law: Total energy of the universe is constant.
- 2nd Law: The total <u>entropy</u> of the universe is always increasing.
 - So, spontaneous processes lead to increased $\Delta S_{universe}$
- 3rd Law: The <u>entropy</u> of a pure, perfectly formed crystalline substance at absolute zero is zero.
 - So, since the minimum value for S is zero, S for any material is always positive!

3

Important Entropy Considerations

- 1. S is temperature dependent.
- 2. For similar materials, S(gases) >> S(liquids) > S(solids)
 - $\Delta S_{\text{phase change}} = \Delta H_{\text{phase change}} / T$
- 3. S for more complex materials is larger than for simpler molecules.
- 4. S for ionic materials becomes larger as inter-ionic attractions get smaller
- 5. S increases when a pure liquid (solid) dissolves in a solvent.
- 6. S increases when a dissolved gas escapes from a solution

Entropy and Spontaneity

Because of the 2nd Law, $\Delta S_{\text{universe}}$ must be positive for a product-favored reaction.

• $\Delta S_{universe}$ is a combination of the entropy change of the reaction (ΔS_{system}) and the effect on the rest of the universe $(\Delta S_{surroundings})$. Mathematically:

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

How do we determine the two components?

$$\Delta S_{\text{system}} = \Sigma S_{\text{products}} - \Sigma S_{\text{reactants}}$$

$$\Delta S_{\text{surroundings}} = \underline{\text{Heat energy absorbed}} = \underline{-\Delta H_{\text{system}}}$$

$$\Delta S_{universe} = \Delta S_{system} + \underline{(-\Delta H_{system})}$$

5

Entropy and Spontaneity

 What do these laws (and what we observe) say about entropy and spontaneity?

$$\Delta S_{universe} = \Delta S_{system} + \underbrace{(-\Delta H_{system})}_{T}$$

 The <u>Combination</u> of enthalpy and entropy determines spontaneity of a reaction.

Process	Sign of ΔS_{system}	Sign of ΔH_{system}
Product-favored		
Reactant-favored		

Entropy and Free Energy

This result of this combination of effects is the **Gibbs Free** Energy Change (ΔG):

$$\Delta S_{universe} = \Delta S_{surroundings} + \Delta S_{system}$$

$$\Delta S_{universe} = \frac{-\Delta H_{system}}{T} + \Delta S_{system}$$

7

Free Energy and Spontaneity

FOR A SPONTANEOUS PROCESS, ∆G MUST BE NEGATIVE!

Because of temperature dependence of ΔG , we can (sometimes) push a reaction in either direction! (Figure 19-9)

$$\Delta G = \Delta H - T \Delta S$$

Sign of ∆H	Sign of ∆S	Sign of ∆G	Spontaneous?
-	+		
+	-		
-	-		
+	+		

Predicting Spontaneity

As with ΔH^o and ΔS^o , ΔG^o for a reaction can be predicted using the appropriate energies of formation

$$\Delta G^{o}_{rxn} = \Sigma[n\Delta G^{o}_{f}(products)] - \Sigma[n\Delta G^{o}_{f}(reactants)]$$

This fact, property, along with $\Delta G = \Delta H - T\Delta S$, lets us make several predictions about the tendency for a reaction.

Example: Is the reduction of magnesia, MgO, with carbon a product-favored process at 25°C? If not, what temperature does it become so? $MgO(s) + C(graphite) \rightarrow Mg(s) + CO(g)$

What about nonstandard conditions?

 ΔG will change as temperature and composition of system varies!

$$\Delta G = \Delta G^{\circ} + RTInQ$$

Q = reaction quotient

R = gas constant in "energy units" = 8.3145 J/mol K

Conceptually: $\Delta G = "G_{products} - G_{reactants}"$

Equilibrium: Special situation when $G_{products} = G_{reactants}$

$$\Delta G = 0 = \Delta G^{\circ} + RTInK$$

Free Energy and Spontaneity A Final Look

Generalizations:

ΛG ⁰ < 0	Forward reaction is spontaneous at standard	
∆G~ < 0	state. ("product-favored")	
.00	Forward reaction is non spontaneous at	
$\Delta G^0 > 0$	standard state. ("reactant-favored")	
$\Delta G^0 = 0$	Reaction is at equilibrium at standard state	
ΔG < 0	Forward reaction is spontaneous under the	
	conditions given. ("product-favored")	
ΔG > 0	Forward reaction is non-spontaneous under the	
	conditions given. ("reactant-favored")	

TABLE 19.1		Criteria for Spontaneous Change: $\Delta G = \Delta H - T$		ntaneous Change: $\Delta G = \Delta H - T\Delta S$	S
Case	ΔΗ	ΔS	ΔG	Result	Example
1.	-	+	-	spontaneous at all temp.	$2 N_2O(g) \longrightarrow 2 N_2(g) + O_2(g)$
2.	-	-	{+	spontaneous at low temp. nonspontaneous at high temp.	$H_2O(1) \longrightarrow H_2O(s)$
3.	+	+	{+ -	nonspontaneous at low temp. spontaneous at high temp.	$NH_3(g) \longrightarrow N_2(g) + 3H_2(g)$
4.	+	-	+	nonspontaneous at all temp.	$3 O_2(g) \longrightarrow 2 O_3(g)$

6