

Reaction Order	Rate Law	Integrated Rate Law]
0	Rate = k	[R] ₀ - [R] _t = <i>k</i> t	
1	Rate = <i>k</i> [R]	$\ln[R]_0 - \ln[R]_t = kt$	
2	Rate = $k[R]^2$	$\frac{1}{\left[R\right]_{t}} - \frac{1}{\left[R\right]_{0}} = \mathbf{k}t$	

Integrated Rate Laws..."Linearized" **GOAL:** Rearrange Integrated Rate Laws to y = kt + b form. (y is related to $[R]_t$, b is related to $[R]_0$) **Integrated Rate** y = kt + b Reaction Order Law Form $[\mathsf{R}]_0 - [\mathsf{R}]_t = kt$ 0 $[R]_t = -kt + [R]_0$ $\ln[R]_0 - \ln[R]_t = kt$ $\ln[R]_t = -kt + \ln[R]_0$ 1 1 1 1 1 = *k*t = **/**t + 2 $[R]_{t}$ $[R]_{t}$ $[R]_0$ $[R]_0$ "Linearizing" makes it easier to determine reaction order at a glance.

6

Mechanisms involving equilibria								
		ہ A + B ج	κ₁ [≥] C + D					
At equilibri	um rate	forward rxn. = rate	e reverse rxn					
	A +	$B \rightarrow C + D$	Rate = k_1 [A][B]					
	C +	$- D \rightarrow A + B$	Rate = $k_1[C][D]$					
What is the What is the	e overall e rate lav	reaction for this co w for this process?	ombination of elementar	y steps?				
	Step 1	Fast, Equilibrium	$ \begin{array}{c} k_1 \\ NO_2CI \rightleftarrows NO_2 + CI^2 \\ k_1 \end{array} $					
	Step 2	Slow	$k_2 \\ NO_2 CI + CI^- \rightarrow NO_2 + CI$	2 13				

