Chemical Reactions (equations)

> Reactants \rightarrow Products
> $2 \mathrm{C}_{8} \mathrm{H}_{18}(\eta)+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}()$

Balanced chemical equations DO tell you:

1. Identity of reactants and products;
2. Amounts (\# of moles) of each reactant relative to other reactants and to products; (Stoichiometry)
3. Physical state (phase) of the reactants and products*
*often, not always
Balanced chemical equations DO NOT tell you:
4. If energy is consumed or released in the process

Thermodynamics
2. How fast the reaction proceeds (rate)

Kinetics

Balancing Chemical Reactions

A reaction isn't very useful unless it is balanced.

- Balanced reaction: \# of atoms of element A must be the same on both the reactant and product sides of the equation.
- No magic formula for balancing reactions - trial and error process.
- Only adjust coefficients, not formulas for compounds!
- Don't introduce species that aren't present in the reaction

Example: Write a balanced chemical equation for the complete combustion of tetraethylead, $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$.
$\ldots \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}(\mathrm{I})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{PbO}(\mathrm{s})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\ldots \mathrm{CO}_{2}(\mathrm{~g})$

Using Balanced Reactions

Most common: Predicting quantities of material produced or consumed in a reaction.

- Generally do mass to mole (or moles to mass) conversion
- Number of atoms (moles) is most important!!

Example: What mass of water is produced by the combustion of 12.6 g octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$?

Using Balanced Reactions: Practical Considerations

The quantity of products formed in a reaction is determined by the reactant that is completely consumed first limiting reagent (reactant).

Example: What mass of water will be produced if $12.6 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$ is allowed to react with $12.6 \mathrm{~g} \mathrm{O}_{2}$?

Using Balanced Reactions:
 Practical Considerations

In real life, it is very rare to produce 100% of the material you would expect based on reaction stoichiometry theoretical yield

- may be some loss (waste) during the reaction
- some reactions simply don't go to completion!
- quantify by calculating percent yield

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
$$

Using Stoichiometry

Example: You have 2.357 g of a mixture of BaCl_{2} and $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. If experiment shows that the mixture has a mass of only 2.108 g after heating to drive of all the waters of hydration in $\mathrm{BaCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$, what is the weight percent of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the original mixture?

Example: A compound contains only C, H, and O . Combustion of 10.68 mg of the compound yields $16.01 \mathrm{mg} \mathrm{CO}_{2}$ and $4.37 \mathrm{mg} \mathrm{H}_{2} \mathrm{O}$. The molar mass of the compound is $176.1 \mathrm{~g} / \mathrm{mol}$. What are the empirical and molecular formulas of the compound?

Using Balanced Reactions:

Considerations of reactions in solution

Many (most) reactions occur when reactants are dissolved in solution. How does this impact our approach?

- We need a measure of the concentration of the reactant (solute) in the solvent.
- Many ways to represent concentration
- Molarity, molality, \%, ppm...

Molarity is most convenient for stoichiometry

$$
\text { molarity }(M)=\frac{\text { moles solute }}{\text { volume solution }(L)}
$$

Examples:
What is the molarity of NaCl when 12.6 g NaCl is dissolved in 250 mL solution?
How many grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ must be dissolved in water to produce 75.0 mL of 0.350 M glucose?

Using Balanced Reactions: Considerations of reactions in solution

Dilution: Number of moles is always constant!

Example: How many mL of concentrated sulfuric acid must be diluted to 100 mL to prepare a 1.00 M solution? Concentrated sulfuric acid is 18.0 M .
Example: How many mL of $0.650 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ are needed to precipitate all of the silver in 415 mL of $0.186 \mathrm{M} \mathrm{AgNO}_{3}$ as $\mathrm{AgCrO}_{4}(\mathrm{~s})$?
$2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$

