Chapter 6 Homework Key, Part 2

18, 21, 24, 26, 33, 35. 46, 54, 56, 62
18. Use Boyle's Law: $P_{1} V_{1}=P_{2} V_{2}$
(a) $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2}}=\mathrm{V}_{2}=\frac{150 \mathrm{~atm} \times 60.0 \mathrm{~L}}{0.925 \mathrm{~atm}}=9730 \mathrm{~L}$
(b) $\frac{9730 \mathrm{~L}}{6.0 \mathrm{~L} / \mathrm{min}}=1620 \mathrm{~min} \times \frac{1 \mathrm{hr}}{60 \min }=27.0 \mathrm{hr}$
21. Use Boyle's Law: $P_{1} \mathrm{~V}_{1}=P_{2} \mathrm{~V}_{2}$
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2}}=\mathrm{V}_{2}=\frac{0.994 \mathrm{~atm} \times 1.88 \mathrm{~L}}{0.497 \mathrm{~atm}}=3.76 \mathrm{~L}$
24. $\mathrm{T}_{2}=\frac{\mathrm{V}_{2} \mathrm{~T}_{1}}{\mathrm{~V}_{1}}=\frac{3 \mathrm{~V}_{1} \times 273 \mathrm{~K}}{\mathrm{~V}_{1}}=819 \mathrm{~K}$
26. Convert all temperatures to Kelvin and use Charles's Law: $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$

$$
\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\mathrm{V}_{2}=\frac{1.00 \mathrm{~L} \times 310 \mathrm{~K}}{263 \mathrm{~K}}=1.18 \mathrm{~L}
$$

33. (a) $2.12 \mathrm{~g} / \mathrm{L} \times 22.4 \mathrm{~L} / \mathrm{mol}=47.5 \mathrm{~g} / \mathrm{mol}$
(b) $2.97 \mathrm{~g} / \mathrm{L} \times 22.4 \mathrm{~L} / \mathrm{mol}=66.5 \mathrm{~g} / \mathrm{mol}$
34. (a) decrease
(b) decrease
(c) increase
35. $\mathrm{pV}=\mathrm{nRT}$
$\mathrm{p}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{0.0456 \mathrm{~mol} \mathrm{x} 0.082057 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K} \times 302 \mathrm{~K}}{7.50 \mathrm{~L}}=0.151 \mathrm{~atm}$
36. (a) All have the same number of atoms (Avogadro's principle).
(b) flask Z
(c) flask X
(d) All have the same number of moles.
37. Amonton's Law: $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$

$$
\frac{\mathrm{P}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\mathrm{P}_{2}=\frac{1.32 \mathrm{~atm} \times 283 \mathrm{~K}}{298 \mathrm{~K}}=1.25 \mathrm{~atm}
$$

62. c
