Atomic Structure and Quantum Theory

Light:

- Properties of electromagnetic radiation: "Light"
 Why electromagnetic?
 - Wavelength, Frequency,...
- Relationship between energy, frequency, and wavelength: "Wave-Particle Duality"

$$E = hv = \underline{hc}$$

 $h = Plank's constant = 6.626 \times 10^{-34} Js$

c = speed of light = 2.998 x 10 8 m/s

Note: units of wavelength must match units of c!

• This energy is in Joules per photon

Photon:

1

Photon Energies

- · Energy is distributed across the electromagnetic spectrum
- Electrons in atoms and compounds occupy a distribution of energy states (both excited and ground states)

Atomic Structure Based on the Bohr Model

Electrons occupy "shells" or orbits

- · These orbits are "quantized"
- Identified by *principle quantum number*, n

Energy of nth level for the hydrogen atom (and ONLY the H atom!):

$$E_n = \frac{-2.178 \times 10^{-18} \text{ J}}{n^2}$$

- Energy must be supplied to promote an electron from the ground state to an excited state.
- Energy is released (often as light) when an electron drops from an excited state to the ground state.

3

The Bohr Model Allows Construction of an Energy-Level Diagram for Hydrogen**

 We can predict (calculate) energy changes for transitions between levels.

$$\Delta E = E_f - E_i = R_H \Biggl(\frac{1}{n_i^2} - \frac{1}{n_f^2} \Biggr)$$

 These energies can be related to photon frequencies

$$\Delta E = hv$$

 This is the foundation of spectroscopy!

Wave Properties of Electrons

Diffraction experiments show that electrons behave in similar fashion as photons.

- If this is true, we can treat them similarly

de Broglie wavelength:
$$\lambda = h$$

In order for wavelength to be measurable, mu must be very small.

SO WHAT? Why care that electrons have wave characteristics!

5

Quantum Mechanics

Theory aimed at understanding atomic behavior

 Based on wave/particle behavior of electrons and electromagnetic radiation (light)

Seeks to answer questions like:

- · Why do different atoms emit different colors?
- · Why are molecules shaped as they are?

Wave-particle duality causes a problem.

If we consider electrons to have wave properties, how can we pinpoint the position of an electron?

Heisenberg Uncertainty Principle: $\Delta x \cdot \Delta(mu) > h$

- It is impossible to fix both the position and energy of an electron with high certainty (accuracy)
- If you calculate the position with high accuracy, there will be a high level of uncertainty in the energy calculated.
- SO WHAT???

Quantum Mechanical Models

What we think we know:

- Electrons are small, constantly moving
- Electrons occupy specific (quantized) levels in an atom
- Electrons have properties of BOTH particles and waves
- At any instant, it is impossible to pinpoint the position of an electron of a given energy with high accuracy.

Because of this combination, the best we can do is calculate the <u>probability</u> of finding an electron at a specific point at a given time.

Even calculating probability is tough to do!

7

Quantum Mechanical Models

Enter Erwin Schrödinger

One simple equation solves it all! OK its not so simple, but it does work!

 $\hat{H}\psi = E\psi$

- Solutions to this equations are wave functions (ψ)
- · Wave functions describe the electron as a matter wave

A Closer Look at Schrödinger

 Solving the Schrodinger equation isn't trivial (even though it looks simple)

$$\hat{H}\Psi = E\Psi$$

· Here's a functional form for the hydrogen atom:

$$-\frac{h^2}{8\pi^2m_e}\Bigg(\frac{\partial^2\psi}{\partial x^2}+\frac{\partial^2\psi}{\partial y^2}+\frac{\partial^2\psi}{\partial z^2}\Bigg)-\frac{Ze^2}{r}\psi=E\psi$$

· Things get even more complex for multi-electron atoms!

9

Schrödinger's Theory in a Nutshell

Only certain wave functions are allowed as solutions to Schrödinger's equation.

- Each ψ corresponds to an allowed energy level for an electron.
- Thus, we say that electron energy levels are quantized.

The <u>probability</u> of finding an electron in a given region of space is dependent on ψ^2 .

 This probability describes the <u>electron density</u> in this region of space.

These allowed wave functions map out orbitals for electrons of varying energies.

 These allowed orbitals are described in three-dimensional space by three <u>quantum numbers</u>.

Bohr + Heisenberg + Schrödinger = ???

- · Energy of an electron is quantized
- Schrödinger Eqn.: Calculate ψ for a given E
- Allows prediction of the probability of finding an electron in a given spot at a given time

Defining Wave Functions

For three-dimensional space, need three variables

Define three **Quantum Numbers**

- 1. Principle Quantum Number, n
 - Relates to "size"
 - Only positive, nonzero integers
- Angular Momentum Quantum Number,
 - Relates to "shape"
 - Only integers, $\ell = 0, 1, 2, 3...n-1$
 - n possible values
 - Spectroscopic notation (s, p, d, f...)
- 3. Magnetic Quantum Number, m,
 - Relates to orientation
 - Only integers, $m_1 = -\ell$, $(-\ell+1)$, ..., -1, 0, 1, ..., $(\ell+1)$, ℓ
 - 2ℓ+1 possible values

Degenerate Orbitals

12

 $\ell = 2$

Subshell $\ell = 0$ $\ell = 1$

Each subshell is made up of $(2\ell + 1)$ orbitals.

Defining Wave Functions

The combination of these quantum numbers allows us to visualize orbitals.

- Why do we care?
- Electrons control chemistry!
- Orbital size and shape \rightarrow **BONDING**

How the *%&&@#\$ do we do this?

- Need wave function (solution to Schrödinger Equation)
- Calculate ψ² (probability density)
- Plot ψ^2 in three dimensions "shape"
- Need to consider <u>radial</u> and <u>angular</u> components
- In some instances, ψ^2 goes to zero (ψ changes sign)
 - nodes: planar (angular) or spherical (radial)

13

Hydrogen-like Wave Functions

 Wave function is a mathematical combination of the angular and radial components.

$$\psi(1s) = R(r) \times Y(\theta, \phi) = \frac{2e^{-r/a_0}}{a_0^{3/2}} \times \frac{1}{\sqrt{4\pi}} = \frac{e^{-r/a_0}}{\sqrt{(\pi a_0^3)}}$$

 Nodes occur when either the radial or angular parts of the wavefunction = 0

TABLE 8.1 The Angular and Radial	Wave Functions of a Hydrogen-like Atom
Angular Part $Y(\theta, \phi)$	Radial Part $R_{n,\ell}(r)$
$Y(s) = \left(\frac{1}{4\pi}\right)^{1/2}$	$R(1s) = 2\left(\frac{Z}{a_0}\right)^{3/2} e^{-\sigma/2}$
	$R(2s) = \frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} (2 - \sigma)e^{-\sigma/2}$
	$R(3s) = \frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} (6 - 6\sigma + \sigma^2)e^{-\sigma/2}$
$Y(p_x) = \left(\frac{3}{4\pi}\right)^{1/2} \sin\theta \cos\phi$	$R(2p) = \frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma e^{-\sigma/2}$
$Y(p_y) = \left(\frac{3}{4\pi}\right)^{1/2} \sin\theta \sin\phi$	$R(3p) = \frac{1}{9\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} (4 - \sigma)\sigma e^{-\sigma/2}$
$Y(p_z) = \left(\frac{3}{4\pi}\right)^{1/2} \cos \theta$	
$Y(d_{z^2}) = \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$	$R(3d) = \frac{1}{9\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \sigma^2 e^{-\sigma/2}$
$Y(d_{x^2-y^2}) = \left(\frac{15}{16\pi}\right)^{1/2} \sin^2 \theta \cos 2\phi$	
$Y(d_{xy}) = \left(\frac{15}{16\pi}\right)^{1/2} \sin^2 \theta \sin 2\phi$	$\sigma = \frac{2Zr}{na_0}$
$Y(d_{xz}) = \left(\frac{15}{4\pi}\right)^{1/2} \sin\theta \cos\theta \cos\phi$	na_0
$Y(d_{yz}) = \left(\frac{15}{4\pi}\right)^{1/2} \sin\theta \cos\theta \sin\phi$	
Copyright © 2007 Pearson Prentice Hall, Inc.	

Nodes

- Places where the Probability of finding the Electron is Zero ($\psi=0$ so $\psi^2=0$)
- When ψ_{radial} is zero, called a radial (or spherical) node
 - There are n \(\ell 1 \) radial nodes
- When ψ_{angular} is zero, called an angular node (or a nodal plane)
 - There are ∠angular nodes

Orbital Shapes

s orbitals

- spherical
- as n ↑, size ↑

p orbitals

- "dumbbell" shaped, 1 nodal plane
- three orientations
- node at nucleus

d orbitals

- two nodal surfaces
- five orientations

f orbitals

- three nodal surfaces
- seven orientations
- Total # nodes depends on n and I: http://www.orbitals.com/orb/orbtable.htm#table3

Multi-electron Atoms

What does an electron "see" from its orbital? What keeps it in the orbital? What impact do other electrons have?

Penetration and Shielded Nuclear Charge:

Depends on:

- · Number of protons (charge) in nucleus
- · Number of electrons in lower energy shells

Effective Nuclear Charge (Z_{eff}):

Average shielded charge "felt" by an electron.

 $-\,$ The higher the $Z_{\text{eff}},$ the stronger the attraction for the nucleus.