A Closer Look at ψ

- Contains Information about the Probability of finding the Quantum Mechanical Entity in a Certain State
- For atom, know energy so ψ is related to probability of finding electron at a certain point in space
- The Probability is not ψ, rather ψ^{2}
- Actually this is $\psi^{*} \psi$

More on Orbitals

- Wavefunctions for Atomic Orbitals can be divided into Two Parts
- Radial (depends on distance from nucleus)
- Angular (depends on angles ϕ and θ)
- For Chemistry Angular Part is (most) Important
- Molecular shape
-Bonding

Nodes

- Places where the Probability of finding the Electron is Zero ($\psi=0$ so $\psi^{2}=0$)
- When $\psi_{\text {radial }}$ is zero, called a radial (or spherical) node
- There are n - ℓ - 1 radial nodes
- When $\psi_{\text {angular }}$ is zero, called an angular node (or a nodal plane)
-There are ℓ angular nodes

1s Radial Wavefunction

Distance from Nucleus (arbitrary units)

1s Orbital

2s Radial Wavefunction

2s Orbital

3s Radial Wavefunction

Dot Picture

Probability of Finding an Electron

- Remember ψ^{2}, not ψ, is Probability

Probability of Finding an Electron

Radial Distribution Function

- Problem with ψ^{2}, it over estimates Probability Close to Nucleus and under estimates it Further Out
- Correct by multiplying ψ^{2} by $4 \pi r^{2}$
- Takes into account that a wedge is smaller toward the center than ends
- This correction only works for s orbitals

Radial Distribution Function

$1 s, 2 s$, and $3 s$ orbitals

(a)

(c)

$2 s$
(b)

$3 s$

Angular Part of Wavefunction

- Every Time ψ goes through a node Sign of Wavefunction changes
- s orbital has same angular sign throughout
- p orbital lobes have different signs
- Lobes alternate signs in a d orbital
- Difference in Phase

When $\mathrm{n}=2$, then $\ell=0$ and 1
Therefore, in $\mathrm{n}=2$ shell there are 2 types of orbitals (2 subshells)
For $\ell=0 \quad m_{l}=0$
this is a s subshell
For $\ell=1 \quad m_{1}=-1,0,+1$
this is a p subshell
with 3 orbitals

p Orbitals

A p orbital

The three p orbitals lie 90° apart in space

2p Radial Wavefunction

$$
\psi_{\text {radial }}=\frac{1}{4 \sqrt{6}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(\frac{2 Z}{a_{0}} r\right) e^{-Z r / 2 a_{0}}
$$

There are $\mathrm{n}-\ell-1=2-1-1=0$ radial nodes.

Distance from Nucleus (arbitrary units)

$2 p_{x}$ Orbital

$2 p_{y}$ Orbital

Degenerate 2p Orbitals

- All 3 orbitals have the same energy (n and ℓ), but differ in orientation $\left(m_{l}\right)$

3p Radial Wavefunction

 2s is
$3 p_{y}$ Orbital

13

d Orbitals

When $\mathrm{n}=3$, what are the values of ℓ ?

$$
\ell=0,1,2
$$

so there are 3 subshells in the shell.
For $\ell=0, m_{l}=0$
---> s subshell with single orbital
For $\ell=1, m_{l}=-1,0,+1$
---> p subshell with 3 orbitals
For $\ell=2, m_{l}=-2,-1,0,+1,+2$
---> d subshell with 5 orbitals

d Orbitals

typical d orbital

s orbitals have no planar nodes $(\ell=0)$ and are spherical.
p orbitals have $\ell=1$, have 1 planar node, and are "dumbbell" shaped.

This means d orbitals $(\ell=2)$ have 2 planar nodes

Dot Picture
(

Dot Picture

$3 \mathrm{z}^{2}$ Orbital

Dot Picture

d Orbitals

(a)

(b)

f orbitals

When $n=4, \ell=0,1,2,3$ so there are 4 subshells in the shell.

For $\ell=0, m_{l}=0$
\rightarrow s subshell with single orbital
For $\ell=1, m_{l}=-1,0,+1$
$\rightarrow p$ subshell with 3 orbitals
For $\ell=2, m_{l}=-2,-1,0,+1,+2$
\rightarrow d subshell with 5 orbitals
For $\ell=3, m_{l}=-3,-2,-1,0,+1,+2,+3$
$\rightarrow f$ subshell with 7 orbitals

19

