Activity

In our earlier discussion of equilibrium constant expressions, we defined K for an equilibrium as follows:

If
$$aA + bB = cC + dD$$
, then

$$\frac{(a_{C})^{c}(a_{D})^{d}}{(a_{A})^{a}(a_{B})^{b}} = K$$

where K is the equilibrium constant, and a_X is the *activity* of X and described by the activity coefficient γ_X and [X]:

$$a_X = \gamma_X[X]$$

We said that typically we setup experimental parameters such that $\gamma_{\rm X}$ is very close to one, close enough to say that activity and concentration are equal.

How can we get away with this? More importantly, <u>when</u> can we get away with this? Lets look at γ_x .

.

Activity Coefficients

We typically calculate g using the extended Debye-Hückel equation, which relates activity coefficients to the ability of ions in solution to interact with one another.

$$-\log \gamma = \frac{0.51z^2\sqrt{\mu}}{1 + \left(\alpha\sqrt{\mu}/305\right)}$$

z = charge of the ion

 α = effective diameter "hydrated" of the ion in picometers

NOTE: This is an empirical parameter!

 $\boldsymbol{\mu} = \text{ionic strength of the solution}$

How do each of these terms affect the activity of an ion?

2

Activity Coefficients

How do each of these terms affect the activity of an ion?

Ionic Strength:

lonic strength describes the total concentration of ions in solution

$$\mu = \frac{1}{2} \sum_{i} c_i z_i^2$$

where c is concentration and z is charge of each ion

Increasing the overall ionic strength provides individual ions a larger number of counterions to interact with, increasing the overall charge in the *ionic atmosphere* nearest the ion.

Question: What does this mean in terms of solubility and dissociation?

δ-+ Cation Anion

3

Activity Coefficients

Hydrated Radius (diameter):

Because of their high charge density, ions with small ionic radii and large charge tend to more strongly bind to solvent molecules.

Ion-dipole interactions

L' ball Phi Ph' COC P

Indust Sub P

No Coc P

The result of this binding is a larger hydrated radius, causing diminished interaction with other ions.

Ionic Charge:

Multiply charged ions are generally more likely to interact with other ions than singly charged.

1

Pulling it All Together

Let's revisit the Debye-Hückel equation:

$$-\log \gamma = \frac{0.51z^2\sqrt{\mu}}{1 + \left(\alpha\sqrt{\mu}/305\right)}$$

- We'd like to use concentrations instead of activities in equilibrium constant expressions, what restriction does that put on γ ?
- How do we accomplish this experimentally?

In situations where γ is not close to unity (1), we have to account for activities in our calculations.

Pulling it All Together

lon	ion size (o, pm)	Ionic strength (µ, M)				
		0,601	8,605	0.01	0.05	0.1
$Charge = \pm 1$		Activity coefficient (\gamma)				
H ⁺	900	0.967	0.933	0.914	0.86	0.83
$(C_nH_n)_rCHCO_{r,r}^{-}(C_nH_r)_sN^*$	800	0.966	0.931	0.912	0.85	0.8
(O ₂ N) ₂ C ₂ H ₂ O ⁺ , (C ₂ H ₂) ₂ NH ⁺ , CH ₂ OC ₂ H ₂ CO ₂ ⁺	700	0.965	0.930	0.909	0.845	0.8
Li-, C ₆ H ₆ CO ₇ , HOC ₆ H ₆ CO ₇ , CIC ₆ H ₆ CO ₇ , C ₆ H ₆ CH ₆ CO ₇ ,						
$CH_2 = CHCH_2CO_2^-, (CH_3)_2CHCH_2CO_2^-, (CH_3CH_2)_4N^+, (C_3H_7)_3NH_2^+$	500	0.965	0.929	0.907	0.835	0.8
$Cl_2CHCO_2^-$, $Cl_3CCO_2^-$, $(CH_3CH_2)_3NH^+$, $(C_3H_3)NH_3^+$	500	0.964	0.928	0.904	0.83	0.7
Na*, CdCl*, ClO7, IO7, HCO7, H2PO4, HSO7, H2A2O7, Cu(NH3)4(NO2)2, CH4CO7, ClCH2CO7, (CH3)4N*,						
CH ₃ CH ₂) ₂ NH ₂ *, H ₂ NCH ₂ CO ₂ *	450	0.964	0.928	0.902	0.82	0.7
H ₃ NCH ₂ CO ₂ H, (CH ₃) ₃ NH, CH ₃ CH ₂ NH ₃ *	400	0.964	0.927	0.901	0.815	0.7
OH-, F-, SCN-, OCN-, HS-, CIO ₃ , CIO ₄ , BrO ₅ , IO ₄ , M ₂ O ₄ ,						
HCO ₂ , H ₂ citrate ⁻ , CH ₃ NH ₃ , (CH ₃) ₂ NH ₂ ⁺	350	0.964	0.926	0.900	0.81	0.7
K*, CI*, Br*, I*, CN*, NO ₂ *, NO ₃ *	300	0.964	0.925	0.899	0.805	0.7
Rh ⁺ , Cr ⁺ , NH ₄ ⁻ , T1 ⁻ , Δg ⁺	250	0.964	0.924	0.898	0.80	0.2
$Charge = \pm 2$				y coefficie	nt (Y)	
Mg ²⁺ , Be ²⁺	800	0.872	0.755	0.69	0.52	0.4
$CH_2(CH_2CH_2CO_2^-)_2$, $(CH_2CH_2CH_2CO_2^-)_2$	700	0.872	0.755	0.685	0.50	0.4
Ca ²⁺ , Cu ²⁺ , Za ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , C ₆ H ₄ (CO ₂ +) ₂ , H ₂ C(CH ₂ CO ₇ +) ₂ , (CH ₂ CH ₂ CO ₇ +) ₂	600	0.870	0.749	0.675	0.485	0.4
$Sr^{2+}, Ba^{2-}, Cd^{2+}, Hg^{2+}, S^{2-}, S_2O_c^{2-}, WO_4^{2-}, H_2C(CO_2^-)_2, (CH_2CO_2^-)_2, (CHOHCO_2^-)_2$	500	0.868	0.744	0.67	0.465	0.3
$Pb^{2+}, CO_3^2, SO_3^2, MoO_4^2, Co(NH_3)_5Cl^{2+}, Fe(CN)_5NO^2, C_2O_4^2,$ Heitrate ²²	450	0.867	0.742	0.665	0.455	0.3
Hg_2^{2+} , SO_4^{2-} , $S_2O_1^{2-}$, $S_2O_5^{2-}$, $S_2O_8^{2-}$, SeO_4^{2-} , CrO_4^{2-} , HPO_4^{2-}	400	0.867	0.740	0.660	0.445	0.3
$Charge = \pm 3$	Activity coefficient (γ)					
A1 ^{3, e} , Fe ^{3, e} , Cr ^{3, e} , Se ^{3, e} , Y ^{3, e} , In ^{3, e} , lanthanides ^e	900	0.738	0.54	0.445	0.245	0.1
vitrate ³⁻	500	0.728	0.51	0.405	0.18	0.1
PO ₄ Fe(CN) ₆ Cr(NH ₃) ₆ Co(NH ₃) ₆ Co(NH ₃) ₉ P ₂ O ⁵	400	0.725	0.505	0.395	0.16	0.0
$Charge = \pm 4$			Activity	y coefficie	nt (y)	
Th ⁴⁺ , Zr ⁴⁺ , Ce ⁴⁺ , Sn ⁴⁺	1 100	0.588	0.35	0.255	0.10	0.0
Pe(CN) ₅	500	0.57	0.31	0.20	0.048	0.0

Pulling it All Together

Example: Using activities, find the concentration of OH $^{-}$ in a solution of 0.075M NaClO $_{4}$ saturated with Mn(OH) $_{2}$. (from Table 7-1, α is 350 pm for OH $^{-}$ and 600 pm for Mn $^{2+}$)

$$Mn(OH)_2 = Mn^{2+} + 2OH^{-}$$
 $K_{sp}=1.6 \times 10^{-13}$

7