CHAPTER 15
 PRINCIPLES OF CHEMICAL EQUILIBRIUM
 PRACTICE EXAMPLES

1A (E) The reaction is as follows:
$2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})$
Therefore, the equilibrium expression is as follows:

$$
\mathrm{K}=\frac{\left[\mathrm{Cu}^{+}\right]^{2}\left[\mathrm{Sn}^{4+}\right]}{\left[\mathrm{Cu}^{2+}\right]^{2}\left[\mathrm{Sn}^{2+}\right]}
$$

Rearranging and solving for Cu^{2+}, the following expression is obtained:

$$
\left[\mathrm{Cu}^{2+}\right]=\left(\frac{\left[\mathrm{Cu}^{+}\right]^{2}\left[\mathrm{Sn}^{4+}\right]}{\mathrm{K}\left[\mathrm{Sn}^{2+}\right]}\right)^{1 / 2}=\left(\frac{x^{2} \cdot x}{(1.48) x}\right)^{1 / 2}=\frac{x}{1.22}
$$

1B (E) The reaction is as follows:

$$
2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Hg}_{2}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Hg}^{2+}(\mathrm{aq})
$$

Therefore, the equilibrium expression is as follows:

$$
\mathrm{K}=\frac{\left[\mathrm{Fe}^{2+}\right]^{2}\left[\mathrm{Hg}^{2+}\right]^{2}}{\left[\mathrm{Fe}^{3+}\right]^{2}\left[\mathrm{Hg}_{2}^{2+}\right]}=\frac{(0.0025)^{2}(0.0018)^{2}}{(0.015)^{2}(\mathrm{x})}=9.14 \times 10^{-6}
$$

Rearranging and solving for $\mathrm{Hg}_{2}{ }^{2+}$, the following expression is obtained:

$$
\left[\mathrm{Hg}_{2}^{2+}\right]=\frac{\left[\mathrm{Fe}^{2+}\right]^{2}\left[\mathrm{Hg}^{2+}\right]^{2}}{\left[\mathrm{Fe}^{3+}\right]^{2} \cdot \mathrm{~K}}=\frac{(0.0025)^{2}(0.0018)^{2}}{(0.015)^{2}\left(9.14 \times 10^{-6}\right)}=0.009847 \approx 0.0098 \mathrm{M}
$$

2A (E) The example gives $\underline{K}_{\underline{c}}=5.8 \times 10^{5}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$.
The reaction we are considering is one-third of this reaction. If we divide the reaction by 3, we should take the cube root of the equilibrium constant to obtain the value of the equilibrium constant for the "divided" reaction: $K_{\mathrm{c} 3}=\sqrt[3]{K_{\mathrm{c}}}=\sqrt[3]{5.8 \times 10^{5}}=8.3 \times 10^{2}$

2B (E) First we reverse the given reaction to put $\mathrm{NO}_{2}(\mathrm{~g})$ on the reactant side. The new equilibrium constant is the inverse of the given one.
$\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad K_{\mathrm{c}}{ }^{\prime}=1 /\left(1.2 \times 10^{2}\right)=0.0083$
Then we double the reaction to obtain 2 moles of $\mathrm{NO}_{2}(\mathrm{~g})$ as reactant. The equilibrium constant is then raised to the second power.
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
K_{\mathrm{c}}=(0.00833)^{2}=6.9 \times 10^{-5}
$$

3A (E) We use the expression $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n_{g a s}}$. In this case, $\Delta n_{\mathrm{gas}}=3+1-2=2$ and thus we have
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{2}=2.8 \times 10^{-9} \times(0.08314 \times 298)^{2}=1.7 \times 10^{-6}$
3B (M) We begin by writing the K_{p} expression. We then substitute $P=(n / V) R T=[$ concentration $] R T$ for each pressure. We collect terms to obtain an expression relating K_{c} and K_{p}, into which we substitute to find the value of K_{c}.

$$
K_{\mathrm{p}}=\frac{\left\{P\left(\mathrm{H}_{2}\right)\right\}^{2}\left\{P\left(\mathrm{~S}_{2}\right)\right\}}{\left\{P\left(\mathrm{H}_{2} \mathrm{~S}\right)\right\}^{2}}=\frac{\left(\left[\mathrm{H}_{2}\right] R T\right)^{2}\left(\left[\mathrm{~S}_{2}\right] R T\right)}{\left(\left[\mathrm{H}_{2} \mathrm{~S}\right] R T\right)^{2}}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}} R T=K_{\mathrm{c}} R T
$$

The same result can be obtained by using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n_{\mathrm{gas}}}$, since $\Delta n_{\mathrm{gas}}=2+1-2=+1$.

$$
K_{\mathrm{c}}=\frac{K_{\mathrm{p}}}{R T}=\frac{1.2 \times 10^{-2}}{0.08314 \times(1065+273)}=1.1 \times 10^{-4}
$$

But the reaction has been reversed and halved. Thus $K_{\text {final }}=\sqrt{\frac{1}{K_{c}}}=\sqrt{\frac{1}{1.1 \times 10^{-4}}}=\sqrt{9091}=95$
4A (E) We remember that neither solids, such as $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}(\mathrm{s})$, nor liquids, such as $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, appear in the equilibrium constant expression. Concentrations of products appear in the numerator, those of reactants in the denominator. $K_{\mathrm{c}}=\frac{\left[\mathrm{Ca}^{2+}\right]^{5}\left[\mathrm{HPO}_{4}{ }^{2-}\right]^{3}}{\left[\mathrm{H}^{+}\right]^{4}}$

4B (E) First we write the balanced chemical equation for the reaction. Then we write the equilibrium constant expressions, remembering that gases and solutes in aqueous solution appear in the K_{c} expression, but pure liquids and pure solids do not.
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
$K_{\mathrm{p}}=\frac{\left\{P\left(\mathrm{H}_{2}\right)\right\}^{4}}{\left\{P\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}^{4}} \quad K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}} \quad$ Because $\Delta n_{\mathrm{gas}}=4-4=0, K_{\mathrm{p}}=K_{\mathrm{c}}$
5A (M) We compute the value of Q_{c}. Each concentration equals the mass (m) of the substance divided by its molar mass (this quotient is the amount of the substance in moles) and further divided by the volume of the container.

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{\frac{m \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.0 \mathrm{~g} \mathrm{CO}_{2}}}{V} \times \frac{m \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.0 \mathrm{~g} \mathrm{H}_{2}}}{\frac{V}{m \times \frac{1 \mathrm{~mol} \mathrm{CO}}{28.0 \mathrm{~g} \mathrm{CO}}} \frac{V}{V} \times \frac{1}{m \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}}}=\frac{\frac{1}{V}}{\frac{1}{28.0 \times 2.0}}}{28.0 \times 18.0}=\frac{28.0 \times 18.0}{44.0 \times 2.0}=5.7>1.00=K_{\mathrm{c}}
$$

(In evaluating the expression above, we cancelled the equal values of V, and we also cancelled the equal values of m.) Because the value of Q_{c} is larger than the value of K_{c}, the reaction will proceed to the left to reach a state of equilibrium. Thus, at equilibrium there will be greater quantities of reactants, and smaller quantities of products than there were initially.

5B (M) We compare the value of the reaction quotient, Q_{p}, to that of K_{p}.
$Q_{\mathrm{p}}=\frac{\left\{P\left(\mathrm{PCl}_{3}\right)\right\}\left\{P\left(\mathrm{Cl}_{2}\right)\right\}}{\left\{P\left(\mathrm{PCl}_{5}\right\}\right.}=\frac{2.19 \times 0.88}{19.7}=0.098$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{2-1}=K_{\mathrm{c}}(R T)^{1}=0.0454 \times(0.08206 \times(261+273))^{1}=1.99$
Because $Q_{\mathrm{c}}<K_{\mathrm{c}}$, the net reaction will proceed to the right, forming products and consuming reactants.

6A (E) $\mathrm{O}_{2}(\mathrm{~g})$ is a reactant. The equilibrium system will shift right, forming product in an attempt to consume some of the added $\mathrm{O}_{2}(\mathrm{~g})$ reactant. Looked at in another way, $\left[\mathrm{O}_{2}\right]$ is increased above its equilibrium value by the addition of oxygen. This makes Q_{c} smaller than K_{c}. (The $\left[\mathrm{O}_{2}\right]$ is in the denominator of the expression.) And the system shifts right to drive Q_{c} back up to K_{c}, at which point equilibrium will have been achieved.

6B (M)
(a) The position of an equilibrium mixture is affected only by changing the concentration of substances that appear in the equilibrium constant expression, $K_{c}=\left[\mathrm{CO}_{2}\right]$. Since $\mathrm{CaO}(\mathrm{s})$ is a pure solid, its concentration does not appear in the equilibrium constant expression and thus adding extra $\mathrm{CaO}(\mathrm{s})$ will have no direct effect on the position of equilibrium.
(b) The addition of $\mathrm{CO}_{2}(\mathrm{~g})$ will increase $\left[\mathrm{CO}_{2}\right]$ above its equilibrium value. The reaction will shift left to alleviate this increase, causing some $\mathrm{CaCO}_{3}(\mathrm{~s})$ to form.
(c) Since $\mathrm{CaCO}_{3}(\mathrm{~s})$ is a pure solid like $\mathrm{CaO}(\mathrm{s})$, its concentration does not appear in the equilibrium constant expression and thus the addition of any solid CaCO_{3} to an equilibrium mixture will not have an effect upon the position of equilibrium.

7A (E) We know that a decrease in volume or an increase in pressure of an equilibrium mixture of gases causes a net reaction in the direction producing the smaller number of moles of gas. In the reaction in question, that direction is to the left: one mole of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is formed when two moles of $\mathrm{NO}_{2}(\mathrm{~g})$ combine. Thus, decreasing the cylinder volume would have the initial effect of doubling both $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ and $\left[\mathrm{NO}_{2}\right]$. In order to reestablish equilibrium, some NO_{2} will then be converted into $\mathrm{N}_{2} \mathrm{O}_{4}$. Note, however, that the NO_{2} concentration will still ultimately end up being higher than it was prior to pressurization.

7B (E) In the balanced chemical equation for the chemical reaction, $\Delta n_{\text {gas }}=(1+1)-(1+1)=0$. As a consequence, a change in overall volume or total gas pressure will have no effect on the position of equilibrium. In the equilibrium constant expression, the two partial pressures in the numerator will be affected to exactly the same degree, as will the two partial pressures in the denominator, and, as a result, Q_{p} will continue to equal K_{p}.

8A (E) The cited reaction is endothermic. Raising the temperature on an equilibrium mixture favors the endothermic reaction. Thus, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ should decompose more completely at higher temperatures and the amount of $\mathrm{NO}_{2}(\mathrm{~g})$ formed from a given amount of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ will be greater at high temperatures than at low ones.

8B (E) The $\mathrm{NH}_{3}(\mathrm{~g})$ formation reaction is $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g}), \Delta H^{\circ}=-46.11 \mathrm{~kJ} / \mathrm{mol}$. This reaction is an exothermic reaction. Lowering temperature causes a shift in the direction of this exothermic reaction to the right toward products. Thus, the equilibrium $\left[\mathrm{NH}_{3}(\mathrm{~g})\right]$ will be greater at $100^{\circ} \mathrm{C}$.

9A (E) We write the expression for K_{c} and then substitute expressions for molar concentrations.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=\frac{\left(\frac{0.22}{3.00}\right)^{2} \frac{0.11}{3.00}}{\left(\frac{2.78}{3.00}\right)^{2}}=2.3 \times 10^{-4}
$$

9B (M) We write the equilibrium constant expression and solve for $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$.

$$
K_{\mathrm{c}}=4.61 \times 10^{-3}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \quad\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{4.61 \times 10^{-3}}=\frac{(0.0236)^{2}}{4.61 \times 10^{-3}}=0.121 \mathrm{M}
$$

Then we determine the mass of $\mathrm{N}_{2} \mathrm{O}_{4}$ present in 2.26 L .

$$
\mathrm{N}_{2} \mathrm{O}_{4} \text { mass }=2.26 \mathrm{~L} \times \frac{0.121 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{1 \mathrm{~L}} \times \frac{92.01 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}=25.2 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}
$$

10A (M) We use the initial-change-equilibrium setup to establish the amount of each substance at equilibrium. We then label each entry in the table in the order of its determination ($1^{\text {st }}$, $\left.2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}\right)$, to better illustrate the technique. We know the initial amounts of all substances ($\left.1^{\text {st }}\right)$. There are no products at the start.
Because "'initial"' + 'change" $=$ '"equilibrium', the equilibrium amount $\left(2^{\text {nd }}\right)$ of $\operatorname{Br}_{2}(\mathrm{~g})$ enables us to determine "change" $\left(3^{\text {rd }}\right)$ for $\mathrm{Br}_{2}(\mathrm{~g})$. We then use stoichiometry to write other entries $\left(4^{\text {th }}\right)$ on the "change" line. And finally, we determine the remaining equilibrium amounts ($\left.5^{\text {th }}\right)$.

Reaction:
$2 \mathrm{NOBr}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) \quad+\quad \mathrm{Br}_{2}(\mathrm{~g})$
Initial: $\quad 1.86 \mathrm{~mol}\left(1^{\text {st }}\right) \quad 0.00 \mathrm{~mol}\left(1^{\text {st }}\right) \quad 0.00 \mathrm{~mol}\left(1^{\text {st }}\right)$
Change: $\quad-0.164 \mathrm{~mol}\left(4^{\text {th }}\right) \quad+0.164 \mathrm{~mol}\left(4^{\text {th }}\right) \quad+0.082 \mathrm{~mol}\left(3^{\text {rd }}\right)$
Equil.: $\quad 1.70 \mathrm{~mol}\left(5^{\text {th }}\right) \quad 0.164 \mathrm{~mol}\left(5^{\text {th }}\right) \quad 0.082 \mathrm{~mol}\left(2^{\text {nd }}\right)$
$K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]}{[\mathrm{NOBr}]^{2}}=\frac{\left(\frac{0.164}{5.00}\right)^{2}\left(\frac{0.082 \mathrm{~mol}}{5.00}\right)}{\left(\frac{1.70}{5.00}\right)^{2}}=1.5 \times 10^{-4}$
Here, $\Delta n_{\text {gas }}=2+1-2=+1 . \quad K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{+1}=1.5 \times 10^{-4} \times(0.08314 \times 298)=3.7 \times 10^{-3}$
10B (M) Use the amounts stated in the problem to determine the equilibrium concentration for each substance.

Reaction:	$2 \mathrm{SO}_{3}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{SO}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$
Initial:	0 mol		0.100 mol		0.100 mol
Changes:	+0.0916 mol		-0.0916 mol		-0.0916/2 mol
Equil.:	0.0916 mol		0.0084 mol		0.0542 mol
Concentrations:	0.0916 mol		$\underline{0.0084 \mathrm{~mol}}$		0.0542 mol
Concentrations.	1.52 L		1.52 L		1.52 L
Concentrations:	0.0603 M		0.0055 M		0.0357 M

We use these values to compute K_{c} for the reaction and then the relationship $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n_{\mathrm{gas}}}\left(\right.$ with $\left.\Delta n_{\text {gas }}=2+1-2=+1\right)$ to determine the value of K_{p}.
$K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}=\frac{(0.0055)^{2}(0.0357)}{(0.0603)^{2}}=3.0 \times 10^{-4}$
$K_{\mathrm{p}}=3.0 \times 10^{-4} \times(0.08314 \times 900) \simeq 0.022$

11A (M) The equilibrium constant expression is $K_{\mathrm{p}}=P\left\{\mathrm{H}_{2} \mathrm{O}\right\} P\left\{\mathrm{CO}_{2}\right\}=0.231$ at $100^{\circ} \mathrm{C}$. From the balanced chemical equation, we see that one mole of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is formed for each mole of $\mathrm{CO}_{2}(\mathrm{~g})$ produced. Consequently, $P\left\{\mathrm{H}_{2} \mathrm{O}\right\}=P\left\{\mathrm{CO}_{2}\right\}$ and $K_{\mathrm{p}}=\left(P\left\{\mathrm{CO}_{2}\right\}\right)^{2}$. We solve this expression for $P\left\{\mathrm{CO}_{2}\right\}: P\left\{\mathrm{CO}_{2}\right\}=\sqrt{\left(P\left\{\mathrm{CO}_{2}\right\}\right)^{2}}=\sqrt{K_{\mathrm{p}}}=\sqrt{0.231}=0.481 \mathrm{~atm}$.

11B (M) The equation for the reaction is $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), K_{\mathrm{p}}=0.108$ at $25^{\circ} \mathrm{C}$. The two partial pressures do not have to be equal at equilibrium. The only instance in which they must be equal is when the two gases come solely from the decomposition of $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$. In this case, some of the $\mathrm{NH}_{3}(\mathrm{~g})$ has come from another source. We can obtain the pressure of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ by substitution into the equilibrium constant expression, since we are given the equilibrium pressure of $\mathrm{NH}_{3}(\mathrm{~g})$.
$K_{\mathrm{p}}=P\left\{\mathrm{H}_{2} \mathrm{~S}\right\} P\left\{\mathrm{NH}_{3}\right\}=0.108=P\left\{\mathrm{H}_{2} \mathrm{~S}\right\} \times 0.500 \mathrm{~atm} \mathrm{NH}_{3} \quad P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}=\frac{0.108}{0.500}=0.216 \mathrm{~atm}$
So, $P_{\text {total }}=P_{\mathrm{H}_{2} \mathrm{~S}}+P_{\mathrm{NH}_{3}}=0.216 \mathrm{~atm}+0.500 \mathrm{~atm}=0.716 \mathrm{~atm}$
12A (M) We set up this problem in the same manner that we have previously employed, namely designating the equilibrium amount of HI as $2 x$. (Note that we have used the same multipliers for x as the stoichiometric coefficients.)

We substitute these terms into the equilibrium constant expression and solve for x.

$$
4 x^{2}=(0.150-x)(0.200-x) 50.2=50.2\left(0.0300-0.350 x+x^{2}\right)=1.51-17.6 x+50.2 x^{2}
$$

$0=46.2 x^{2}-17.6 x+1.51 \quad$ Now we use the quadratic equation to determine the value of x.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{17.6 \pm \sqrt{(17.6)^{2}-4 \times 46.2 \times 1.51}}{2 \times 46.2}=\frac{17.6 \pm 5.54}{92.4}=0.250$ or 0.131

The first root cannot be used because it would afford a negative amount of H_{2} (namely, $0.150-0.250=-0.100$). Thus, we have $2 \times 0.131=0.262 \mathrm{~mol} \mathrm{HI}$ at equilibrium. We check by substituting the amounts into the K_{c} expression. (Notice that the volumes cancel.) The slight disagreement in the two values (52 compared to 50.2) is the result of rounding error.

$$
K_{\mathrm{c}}=\frac{(0.262)^{2}}{(0.150-0.131)(0.200-0.131)}=\frac{0.0686}{0.019 \times 0.069}=52
$$

12B (D)

(a) The equation for the reaction is $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ and $K_{\mathrm{c}}=4.61 \times 10^{-3}$ at $25^{\circ} \mathrm{C}$. In the example, this reaction is conducted in a 0.372 L flask. The effect of moving the mixture to the larger, 10.0 L container is that the reaction will be shifted to produce a greater number of moles of gas. Thus, $\mathrm{NO}_{2}(\mathrm{~g})$ will be produced and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ will dissociate. Consequently, the amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ will decrease.
(b) The equilibrium constant expression, substituting 10.0 L for 0.372 L , follows.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left(\frac{2 x}{10.0}\right)^{2}}{\frac{0.0240-x}{10.0}}=\frac{4 x^{2}}{10.0(0.0240-x)}=4.61 \times 10^{-3}
$$

This can be solved with the quadratic equation, and the sensible result is $x=0.0118$ moles. We can attempt the method of successive approximations. First, assume that $x \ll 0.0240$. We obtain:

$$
x=\frac{\sqrt{4.61 \times 10^{-3} \times 10.0(0.0240-0)}}{4}=\sqrt{4.61 \times 10^{-3} \times 2.50(0.0240-0)}=0.0166
$$

Clearly x is not much smaller than 0.0240 . So, second, assume $x \approx 0.0166$. We obtain:
$x=\sqrt{4.61 \times 10^{-3} \times 2.50(0.0240-0.0166)}=0.00925$
This assumption is not valid either. So, third, assume $x \approx 0.00925$. We obtain:
$x=\sqrt{4.61 \times 10^{-3} \times 2.50(0.0240-0.00925)}=0.0130$
Notice that after each cycle the value we obtain for x gets closer to the value obtained from the roots of the equation. The values from the next several cycles follow.

$$
\begin{array}{ccccccccc}
\text { Cycle } & 4^{\text {th }} & 5^{\text {th }} & 6^{\text {th }} & 7^{\text {th }} & 8^{\text {th }} & 9^{\text {th }} & 10^{\text {th }} & 11^{\text {th }} \\
x \text { value } & 0.0112 & 0.0121 & 0.0117 & 0.0119 & 0.01181 & 0.01186 & 0.01183 & 0.01184
\end{array}
$$

The amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium is 0.0118 mol , less than the $0.0210 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$ at equilibrium in the 0.372 L flask, as predicted.

13A (M) Again we base our solution on the balanced chemical equation.
Equation: $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons \quad \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s}) \quad K_{\mathrm{c}}=2.98$
Initial: $00 \mathrm{M} \quad 0 \mathrm{M} \quad 1.20 \mathrm{M}$
Changes: $+x \mathrm{M}+x \mathrm{M} \quad-x \mathrm{M}$
Equil: $\quad x \mathrm{M} \quad x \mathrm{M}$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Fe}^{2+}\right]}=2.98=\frac{1.20-x}{x^{2}} \quad 2.98 x^{2}=1.20-x \quad 0=2.98 x^{2}+x-1.20
$$

We use the quadratic formula to obtain a solution.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1.00 \pm \sqrt{(1.00)^{2}+4 \times 2.98 \times 1.20}}{2 \times 2.98}=\frac{-1.00 \pm 3.91}{5.96}=0.488 \mathrm{M} \text { or }-0.824 \mathrm{M}
$$

A negative root makes no physical sense. We obtain the equilibrium concentrations from x.

$$
\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Fe}^{2+}\right]=0.488 \mathrm{M} \quad\left[\mathrm{Fe}^{3+}\right]=1.20-0.488=0.71 \mathrm{M}
$$

13B (M) We first calculate the value of Q_{c} to determine the direction of the reaction.

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{V}^{2+}\right]\left[\mathrm{Cr}^{3+}\right]}{\left[\mathrm{V}^{3+}\right]\left[\mathrm{Cr}^{2+}\right]}=\frac{0.150 \times 0.150}{0.0100 \times 0.0100}=225<7.2 \times 10^{2}=K_{\mathrm{c}}
$$

Because the reaction quotient has a smaller value than the equilibrium constant, a net reaction to the right will occur. We now set up this solution as we have others, heretofore, based on the balanced chemical equation.

$$
\begin{array}{lcccc}
& \mathrm{V}^{3+}(\mathrm{aq}) & +\mathrm{Cr}^{2+}(\mathrm{aq}) \rightleftharpoons & \mathrm{V}^{2+}(\mathrm{aq}) & +\mathrm{Cr}^{3+}(\mathrm{aq}) \\
\text { initial } & 0.0100 \mathrm{M} & 0.0100 \mathrm{M} & 0.150 \mathrm{M} & 0.150 \mathrm{M} \\
\text { changes } & -x \mathrm{M} & -x \mathrm{M} & +x \mathrm{M} & +x \mathrm{M} \\
\text { equil } & (0.0100-x) \mathrm{M} & (0.0100-x) \mathrm{M} & (0.150+x) \mathrm{M} & (0.150+x) \mathrm{M} \\
K_{\mathrm{c}}=\frac{\left[\mathrm{V}^{2+}\right]\left[\mathrm{Cr}^{3+}\right]}{\left[\mathrm{V}^{3+}\right]\left[\mathrm{Cr}^{2+}\right]}=\frac{(0.150+x) \times(0.150+x)}{(0.0100-x) \times(0.0100-x)}=7.2 \times 10^{2}=\left(\frac{0.150+x}{0.0100-x}\right)^{2}
\end{array}
$$

If we take the square root of both sides of this expression, we obtain

$$
\sqrt{7.2 \times 10^{2}}=\frac{0.150+x}{0.0100-x}=27
$$

$0.150+x=0.27-27 x$ which becomes $28 x=0.12$ and yields 0.0043 M . Then the equilibrium concentrations are: $\left[\mathrm{V}^{3+}\right]=\left[\mathrm{Cr}^{2+}\right]=0.0100 \mathrm{M}-0.0043 \mathrm{M}=0.0057 \mathrm{M}$ $\left[\mathrm{V}^{2+}\right]=\left[\mathrm{Cr}^{3+}\right]=0.150 \mathrm{M}+0.0043 \mathrm{M}=0.154 \mathrm{M}$

INTEGRATIVE EXAMPLE

A. (E) We will determine the concentration of F6P and the final enthalpy by adding the two reactions:

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{ATP} \rightleftharpoons \mathrm{G} 6 \mathrm{P}+\mathrm{ADP} \\
\mathrm{G} 6 \mathrm{P} \rightleftharpoons \mathrm{~F} 6 \mathrm{P} \\
\hline \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{ATP} \rightleftharpoons \mathrm{ADP}+\mathrm{F} 6 \mathrm{P} \\
\Delta \mathrm{H}_{\mathrm{TOT}}=-19.74 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}+2.84 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}=-16.9 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Since the overall reaction is obtained by adding the two individual reactions, then the overall reaction equilibrium constant is the product of the two individual K values. That is, $\mathrm{K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2}=1278$

The equilibrium concentrations of the reactants and products is determined as follows:

	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	+	ATP	\rightleftharpoons	ADP	+
	F 6 P					
Initial	1.20×10^{-6}		1×10^{-4}		1×10^{-2}	
Change	$-x$		$-x$			$+x$
Equil	$1.20 \times 10^{-6}-x$		$1 \times 10^{-4}-x$			$1 \times 10^{-2}+x$

$$
\begin{aligned}
& K=\frac{[\mathrm{ADP}][\mathrm{F} 6 \mathrm{P}]}{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right][\mathrm{ATP}]} \\
& 1278=\frac{\left(1 \times 10^{-2}+x\right)(x)}{\left(1.20 \times 10^{-6}-x\right)\left(1 \times 10^{-4}-x\right)}=\frac{1.0 \times 10^{-2} x+x^{2}}{1.2 \times 10^{-10}-1.012 \times 10^{-4} x+x^{2}}
\end{aligned}
$$

Expanding and rearranging the above equation yields the following second-order polynomial: $1277 x^{2}-0.1393 x+1.534 \times 10^{-7}=0$
Using the quadratic equation to solve for x, we obtain two roots: $x=1.113 \times 10^{-6}$ and 1.080×10^{-4}. Only the first one makes physical sense, because it is less than the initial value of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. Therefore, $[\mathrm{F} 6 \mathrm{P}]_{\text {eq }}=1.113 \times 10^{-6}$.

During a fever, the body generates heat. Since the net reaction above is exothermic, Le Châtelier's principle would force the equilibrium to the left, reducing the amount of F6P generated.
B. (E)
(a) The ideal gas law can be used for this reaction, since we are relating vapor pressure and concentration. Since $\mathrm{K}=3.3 \times 10^{-29}$ for decomposition of Br_{2} to Br (very small), then it can be ignored.
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{(0.100 \mathrm{~mol})\left(0.08206 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1}\right)(298.15 \mathrm{~K})}{0.289 \mathrm{~atm}}=8.47 \mathrm{~L}$
(b) At 1000 K , there is much more Br being generated from the decomposition of Br_{2}. However, K is still rather small, and this decomposition does not notably affect the volume needed.

EXERCISES

Writing Equilibrium Constants Expressions

1. (E)

(a) $2 \mathrm{COF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CF}_{4}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{CF}_{4}\right]}{\left[\mathrm{COF}_{2}\right]^{2}}
$$

(b) $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Cu}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}
$$

(c) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{Fe}^{3+}(\mathrm{aq})$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{4}{ }^{2-}\right]^{2}\left[\mathrm{Fe}^{3+}\right]^{2}}{\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{Fe}^{2+}\right]^{2}}
$$

2. (E)
(a) $4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
K_{\mathrm{P}}=\frac{\mathrm{P}\left\{\mathrm{~N}_{2}\right\}^{2} \cdot \mathrm{P}\left\{\mathrm{H}_{2} \mathrm{O}\right\}^{6}}{\mathrm{P}\left\{\mathrm{NH}_{3}\right\}^{4} \cdot \mathrm{P}\left\{\mathrm{O}_{2}\right\}^{3}}
$$

(b) $7 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$K_{\mathrm{P}}=\frac{\mathrm{P}\left\{\mathrm{NH}_{3}\right\}^{2} \cdot \mathrm{P}\left\{\mathrm{H}_{2} \mathrm{O}\right\}^{4}}{\mathrm{P}\left\{\mathrm{H}_{2}\right\}^{7} \cdot \mathrm{P}\left\{\mathrm{NO}_{2}\right\}^{2}}$
(c) $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+4 \mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{NaCN}(\mathrm{s})+3 \mathrm{CO}(\mathrm{g}) \quad K_{\mathrm{c}}=\frac{[\mathrm{CO}]^{3}}{\left[\mathrm{~N}_{2}\right]}$
3. (E)
(a) $K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}$
(b) $K_{\mathrm{c}}=\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$
(c) $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}$
4. (E)
(a) $\quad K_{\mathrm{p}}=\frac{P\left\{\mathrm{CH}_{4}\right\} \mathrm{P}\left\{\mathrm{H}_{2} \mathrm{~S}\right\}^{2}}{P\left\{\mathrm{CS}_{2}\right\} \mathrm{P}\left\{\mathrm{H}_{2}\right\}^{4}}$
(b) $\quad K_{\mathrm{p}}=P\left\{\mathrm{O}_{2}\right\}^{1 / 2}$
(c) $K_{\mathrm{p}}=P\left\{\mathrm{CO}_{2}\right\} P\left\{\mathrm{H}_{2} \mathrm{O}\right\}$
5. (E) In each case we write the equation for the formation reaction and then the equilibrium constant expression, K_{c}, for that reaction.
(a) $\quad \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HF}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HF}]}{\left[\mathrm{H}_{2}\right]^{1 / 2}\left[\mathrm{~F}_{2}\right]^{1 / 2}}$
(b) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
(c) $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{~N}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
(d) $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{ClF}_{3}(\mathrm{l}) \quad K_{\mathrm{c}}=\frac{1}{\left[\mathrm{Cl}_{2}\right]^{1 / 2}\left[\mathrm{~F}_{2}\right]^{3 / 2}}$
6. (E) In each case we write the equation for the formation reaction and then the equilibrium constant expression, K_{p}, for that reaction.
(a) $\quad \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOCl}(\mathrm{g}) \quad K_{\mathrm{P}}=\frac{\left[\mathrm{P}_{\mathrm{NOCl}}\right]}{\left[\mathrm{P}_{\mathrm{N}_{2}}\right]^{1 / 2}\left[\mathrm{P}_{\mathrm{O}_{2}}\right]^{1 / 2}\left[\mathrm{P}_{\mathrm{Cl}_{2}}\right]^{1 / 2}}$
(b) $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{ClNO}_{2}(\mathrm{~g})$

$$
K_{\mathrm{P}}=\frac{\left[\mathrm{P}_{\mathrm{ClNO}_{2}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{N}_{2}}\right]\left[\mathrm{P}_{\mathrm{O}_{2}}\right]^{2}\left[\mathrm{P}_{\mathrm{Cl}_{2}}\right]}
$$

(c) $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$K_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{N}_{2} \mathrm{H}_{4}}}{\left[\mathrm{P}_{\mathrm{N}_{2}}\right]\left[\mathrm{P}_{\mathrm{H}_{2}}\right]^{2}}$
(d) $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
$K_{\mathrm{P}}=\frac{1}{\left[\mathrm{P}_{\mathrm{N}_{2}}\right]^{1 / 2}\left[\mathrm{P}_{\mathrm{H}_{2}}\right]^{2}\left[\mathrm{P}_{\mathrm{Cl}_{2}}\right]^{1 / 2}}$
7. (E) Since $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n_{g}}$, it is also true that $K_{\mathrm{c}}=K_{\mathrm{p}}(R T)^{-\Delta n_{g}}$.
(a) $K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]}=K_{\mathrm{p}}(R T)^{-(+1)}=2.9 \times 10^{-2}(0.08206 \times 303)^{-1}=0.0012$
(b) $K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}=K_{\mathrm{p}}(R T)^{-(-1)}=1.48 \times 10^{4} \times(0.08206 \times 303)=5.55 \times 10^{5}$
(c) $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{3}}{\left[\mathrm{H}_{2}\right]^{3}}=K_{\mathrm{p}}(R T)^{0}=K_{\mathrm{p}}=0.429$
8. (E) $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n_{g}}$, with $R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}$
(a) $K_{\mathrm{p}}=\frac{\mathrm{P}\left\{\mathrm{NO}_{2}\right\}^{2}}{\mathrm{P}\left\{\mathrm{N}_{2} \mathrm{O}_{4}\right\}}=K_{\mathrm{c}}(\mathrm{RT})^{+1}=4.61 \times 10^{-3}(0.08206 \times 298)^{1}=0.113$
(b) $K_{\mathrm{p}}=\frac{\mathrm{P}\left\{\mathrm{C}_{2} \mathrm{H}_{2}\right\} \mathrm{P}\left\{\mathrm{H}_{2}\right\}^{3}}{\mathrm{P}\left\{\mathrm{CH}_{4}\right\}^{2}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{(+2)}=(0.154)(0.08206 \times 2000)^{2}=4.15 \times 10^{3}$
(c) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}\left\{\mathrm{H}_{2}\right\}^{4} \mathrm{P}\left\{\mathrm{CS}_{2}\right\}}{\mathrm{P}\left\{\mathrm{H}_{2} \mathrm{~S}\right\}^{2} \mathrm{P}\left\{\mathrm{CH}_{4}\right\}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{(+2)}=\left(5.27 \times 10^{-8}\right)(0.08206 \times 973)^{2}=3.36 \times 10^{-4}$
9. (E) The equilibrium reaction is $\mathrm{H}_{2} \mathrm{O}(1) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ with $\Delta n_{\text {gas }}=+1 . K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n_{g}}$ gives $K_{\mathrm{c}}=K_{\mathrm{p}}(R T)^{-\Delta n_{g}} . \quad K_{\mathrm{p}}=P\left\{\mathrm{H}_{2} \mathrm{O}\right\}=23.8 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.0313$ $K_{\mathrm{c}}=K_{\mathrm{p}}(R T)^{-1}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{RT}}=\frac{0.0313}{0.08206 \times 298}=1.28 \times 10^{-3}$
10. (E) The equilibrium rxn is $\mathrm{C}_{6} \mathrm{H}_{6}(1) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$ with $\Delta n_{\text {gas }}=+1$. Using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n_{g}}$, $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)=5.12 \times 10^{-3}(0.08206 \times 298)=0.125=P\left\{\mathrm{C}_{6} \mathrm{H}_{6}\right\}$
$P\left\{\mathrm{C}_{6} \mathrm{H}_{6}\right\}=0.125 \mathrm{~atm} \times \frac{760 \mathrm{mmHg}}{1 \mathrm{~atm}}=95.0 \mathrm{mmHg}$
11. (E) Add one-half of the reversed $1^{\text {st }}$ reaction with the $2^{\text {nd }}$ reaction to obtain the desired reaction.

$$
\begin{array}{ll}
\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g}) & K_{\mathrm{c}}=\frac{1}{\sqrt{2.1 \times 10^{30}}} \\
\mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOBr}(\mathrm{~g}) & K_{\mathrm{c}}=1.4 \\
\text { net }: \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOBr}(\mathrm{~g}) & K_{\mathrm{c}}=\frac{1.4}{\sqrt{2.1 \times 10^{30}}}=9.7 \times 10^{-16}
\end{array}
$$

12. (M) We combine the several given reactions to obtain the net reaction.

$$
\begin{array}{ll}
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & K_{\mathrm{c}}=\frac{1}{\left(2.7 \times 10^{-18}\right)^{2}} \\
4 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) & K_{\mathrm{c}}=\frac{1}{\left(4.6 \times 10^{-3}\right)^{2}} \\
2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g}) & K_{\mathrm{c}}=\left(4.1 \times 10^{-9}\right)^{4}
\end{array}
$$

net : $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) K_{c(\text { Net })}=\frac{\left(4.1 \times 10^{-9}\right)^{4}}{\left(2.7 \times 10^{-18}\right)^{2}\left(4.6 \times 10^{-3}\right)^{2}}=1.8 \times 10^{6}$
13. (M) We combine the K_{c} values to obtain the value of K_{c} for the overall reaction, and then convert this to a value for K_{p}.
$2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad K_{\mathrm{c}}=(1.4)^{2}$
$2 \mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
$K_{c}=\left(1 \times 10^{8}\right)^{2}$
$4 \mathrm{CO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{C}($ graphite $)+2 \mathrm{CO}_{2}(\mathrm{~g})$
$K_{c}=\frac{1}{(0.64)^{2}}$
net: $\quad 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad K_{\mathrm{c}(\text { Net })}=\frac{(1.4)^{2}\left(1 \times 10^{8}\right)^{2}}{(0.64)^{2}}=5 \times 10^{6}$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}=\frac{K_{c}}{R T}=\frac{5 \times 10^{16}}{0.08206 \times 1200}=5 \times 10^{14}$
14. (M) We combine the K_{p} values to obtain the value of K_{p} for the overall reaction, and then convert this to a value for K_{c}.
$2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad K_{\mathrm{p}}=\left(\frac{1}{1.1 \times 10^{2}}\right)^{2}$
$2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \quad K_{\mathrm{p}}=(0.3)^{2}$
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad K_{\mathrm{p}}=\left(1.0 \times 10^{-9}\right)^{2}$
net: $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}) \quad K_{\mathrm{p}(\mathrm{Net)}}=\frac{(0.3)^{2}\left(1.0 \times 10^{-9}\right)^{2}}{\left(1.1 \times 10^{2}\right)^{2}}=7.4 \times 10^{-24}$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \quad K_{\mathrm{c}}=\frac{K_{\mathrm{p}}}{(R T)^{\Delta n}}=\frac{7 . \underline{\times 10^{-24}}}{(0.08206 \times 298)^{2-3}}=2 \times 10^{-22}$
15. (E) $\mathrm{CO}_{2}($ g $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

In terms of concentration, $\mathrm{K}=\mathrm{a}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right) / \mathrm{a}\left(\mathrm{CO}_{2}\right)$
In terms of concentration and partial pressure, $\mathrm{K}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] / \mathrm{c}^{\circ}}{\mathrm{P}_{\mathrm{CO}_{2}} / \mathrm{P}^{\circ}}$
16. (E) $2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$\mathrm{K}=\frac{\mathrm{a}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}}{\mathrm{a}_{\mathrm{Fe}} \cdot \mathrm{a}_{\mathrm{O}_{2}}}$. Since activity of solids and liquids is defined as 1 , then the expression simplifies to $\mathrm{K}=\frac{1}{\mathrm{a}_{\mathrm{O}_{2}}}$
Similarly, in terms of pressure and concentration, $\mathrm{K}=1 /\left(\mathrm{P}_{\mathrm{O}_{2}} / \mathrm{P}^{\circ}\right)$

Experimental Determination of Equilibrium Constants

17. (M) First, we determine the concentration of PCl_{5} and of Cl_{2} present initially and at equilibrium, respectively. Then we use the balanced equation to help us determine the concentration of each species present at equilibrium.
$\left[\mathrm{PCl}_{5}\right]_{\text {initial }}=\frac{1.00 \times 10^{-3} \mathrm{~mol} \mathrm{PCl}_{5}}{0.250 \mathrm{~L}}=0.00400 \mathrm{M}$

$$
\left[\mathrm{Cl}_{2}\right]_{\text {equil }}=\frac{9.65 \times 10^{-4} \mathrm{~mol} \mathrm{Cl}_{2}}{0.250 \mathrm{~L}}=0.00386 \mathrm{M}
$$

Equation: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g}) \quad+\quad \mathrm{Cl}_{2}(\mathrm{~g})$
Initial: 0.00400 M
Changes: $-x \mathrm{M}$
Equil: $\quad 0.00400 \mathrm{M}-x \mathrm{M}$

0 M
$+x \mathrm{M}$
0 M
$+x \mathrm{M}$ $x \mathrm{M} \leftarrow 0.00386 \mathrm{M}$ (from above)

At equilibrium, $\left[\mathrm{Cl}_{2}\right]=\left[\mathrm{PCl}_{3}\right]=0.00386 \mathrm{M}$ and $\left[\mathrm{PCl}_{5}\right]=0.00400 \mathrm{M}-x \mathrm{M}=0.00014 \mathrm{M}$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{(0.00386 \mathrm{M})(0.00386 \mathrm{M})}{0.00014 \mathrm{M}}=0.10 \underline{6}
$$

18. (M) First we determine the partial pressure of each gas.

$$
\begin{aligned}
& P_{\text {initial }}\left\{\mathrm{H}_{2}(\mathrm{~g})\right\}=\frac{n R T}{V}=\frac{1.00 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{gH}_{2}} \times \frac{0.08206 \mathrm{~L} \mathrm{~atm}}{\mathrm{molK}} \times 1670 \mathrm{~K}}{0.500 \mathrm{~L}}=136 \mathrm{~atm} \\
& P_{\text {initial }}\left\{\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\right\}=\frac{n R T}{V}=\frac{1.06 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S} \times \frac{1 \mathrm{molH}_{2} \mathrm{~S}}{34.08 \mathrm{gH}_{2} \mathrm{~S}} \times \frac{0.08206 \mathrm{~L} \mathrm{~atm}}{\mathrm{molK}} \times 1670 \mathrm{~K}}{0.500 \mathrm{~L}}=8.52 \mathrm{~atm} \\
& P_{\text {equil }}\left\{\mathrm{S}_{2}(\mathrm{~g})\right\}=\frac{n R T}{V}=\frac{8.00 \times 10^{-6} \mathrm{~mol} \mathrm{~S}_{2} \times \frac{0.08206 \mathrm{~L} \mathrm{~atm}}{\mathrm{molK}} \times 1670 \mathrm{~K}}{0.500 \mathrm{~L}}=2.19 \times 10^{-3} \mathrm{~atm} \\
& \text { Equation: } 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \text { Initial: } \quad 136 \mathrm{~atm} \quad 0 \mathrm{~atm} \quad 8.52 \mathrm{~atm} \\
& \text { Changes: } \quad+0.00438 \mathrm{~atm} 0.00219 \mathrm{~atm} \quad-0.00438 \mathrm{~atm} \\
& \text { Equil: } \quad 136 \mathrm{~atm} \quad 0.00219 \mathrm{~atm} \quad 8.52 \mathrm{~atm} \\
& K_{\mathrm{p}}=\frac{P\left\{\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\right\}^{2}}{P\left\{\mathrm{H}_{2}(\mathrm{~g})\right\}^{2} \mathrm{P}\left\{\mathrm{~S}_{2}(\mathrm{~g})\right\}}=\frac{(8.52)^{2}}{(136)^{2} 0.00219}=1.79
\end{aligned}
$$

19. (M)
(a) $K_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}=\frac{\frac{0.105 \mathrm{~g} \mathrm{PCl}_{5}}{2.50 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{PCl}_{5}}{208.2 \mathrm{~g}}}{\left(\frac{0.220 \mathrm{~g} \mathrm{PCl}_{3}}{2.50 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{PCl}_{3}}{137.3 \mathrm{~g}}\right) \times\left(\frac{2.12 \mathrm{~g} \mathrm{Cl}_{2}}{2.50 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.9 \mathrm{~g}}\right)}=26.3$
(b) $\quad K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}=26.3(0.08206 \times 523)^{-1}=0.613$
20. (M)
$[\mathrm{ICl}]_{\text {initial }}=\frac{0.682 \mathrm{~g} \mathrm{ICl} \times \frac{1 \mathrm{~mol} \mathrm{ICl}}{162.36 \mathrm{~g} \mathrm{ICl}}}{0.625 \mathrm{~L}}=6.72 \times 10^{-3} \mathrm{M}$

Reaction:	$2 \mathrm{ICl}(\mathrm{g})$	$\mathrm{I}_{2}(\mathrm{~g})$	+	$\mathrm{Cl}_{2}(\mathrm{~g})$
Initial:	$6.72 \times 10^{-3} \mathrm{M}$	0 M		0 M
Change	-2x	$+x$		$+x$
Equilibrium	$6.72 \times 10^{-3} \mathrm{M}-2 \mathrm{X}$	x		x

$$
\begin{aligned}
& {\left[\mathrm{I}_{2}\right]_{\text {equil }}=\frac{0.0383 \mathrm{~g} \mathrm{I}_{2} \times \frac{1 \mathrm{~mol} \mathrm{I}_{2}}{253.808 \mathrm{~g} \mathrm{I}_{2}}}{0.625 \mathrm{~L}}=2.41 \times 10^{-4} \mathrm{M}=x} \\
& K_{\mathrm{c}}=\frac{x \cdot x}{\left(6.72 \times 10^{-3}-2 x\right)}=\frac{\left(2.41 \times 10^{-4}\right)^{2}}{\left(6.72 \times 10^{-3}-2\left(2.41 \times 10^{-4}\right)\right)}=9.31 \times 10^{-6}
\end{aligned}
$$

21. (E)

$$
\begin{aligned}
& \mathrm{K}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{H}^{+}\right]^{3}} \Rightarrow 9.1 \times 10^{3}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left(1.0 \times 10^{-7}\right)^{3}} \\
& {\left[\mathrm{Fe}^{3+}\right]=9.1 \times 10^{-18} \mathrm{M}}
\end{aligned}
$$

22. (E)

$$
\begin{aligned}
& \mathrm{K}=\frac{\left[\mathrm{NH}_{3}(\mathrm{aq})\right]}{\mathrm{P}_{\mathrm{NH}_{3}(\mathrm{~g})}} \Rightarrow 57.5=\frac{5 \times 10^{-9}}{\mathrm{P}_{\mathrm{NH}_{3}(\mathrm{~g})}} \\
& \mathrm{P}_{\mathrm{NH}_{3}(\mathrm{~g})}=5 \times 10^{-9} / 57.5=8.7 \times 10^{-11}
\end{aligned}
$$

Equilibrium Relationships

23. (M) $K_{\mathrm{c}}=281=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}} \times \frac{0.185 \mathrm{~L}}{0.00247 \mathrm{~mol}} \frac{\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{SO}_{3}\right]}=\sqrt{\frac{0.185}{0.00247 \times 281}}=0.516$
24. (M) $K_{\mathrm{c}}=0.011=\frac{[\mathrm{I}]^{2}}{\left[\mathrm{I}_{2}\right]}=\frac{\left(\frac{0.37 \mathrm{~mol} \mathrm{I}}{V}\right)^{2}}{\frac{1.00 \mathrm{molI}_{2}}{V}}=\frac{1}{V} \times 0.14 \quad V=\frac{0.14}{0.011}=13 \mathrm{~L}$
25. (M)
(a) A possible equation for the oxidation of $\mathrm{NH}_{3}(\mathrm{~g})$ to $\mathrm{NO}_{2}(\mathrm{~g})$ follows.
$\mathrm{NH}_{3}(\mathrm{~g})+\frac{7}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(b) We obtain K_{p} for the reaction in part (a) by appropriately combining the values of K_{p} given in the problem.

$$
\begin{array}{ll}
\mathrm{NH}_{3}(\mathrm{~g})+\frac{5}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & K_{p}=2.11 \times 10^{19} \\
\mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g}) & K_{\mathrm{p}}=\frac{1}{0.524}
\end{array}
$$

$$
\text { net: } \mathrm{NH}_{3}(\mathrm{~g})+\frac{7}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad K_{p}=\frac{2.11 \times 10^{19}}{0.524}=4.03 \times 10^{19}
$$

26. (D)
(a) We first determine $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{CH}_{4}\right]$ and then $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] .\left[\mathrm{CH}_{4}\right]=\left[\mathrm{H}_{2}\right]=\frac{0.10 \mathrm{~mol}}{1.0 \mathrm{~L}}=0.10 \mathrm{M}$ $K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]^{2}}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=\frac{K_{\mathrm{c}}\left[\mathrm{CH}_{4}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}}=\frac{0.154 \times 0.10^{2}}{0.10^{3}}=1.54 \mathrm{M}$
In a 1.00 L container, each concentration numerically equals the molar quantities of the substance.

$$
\chi\left\{\mathrm{C}_{2} \mathrm{H}_{2}\right\}=\frac{1.54 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}}{1.54 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}+0.10 \mathrm{~mol} \mathrm{CH}_{4}+0.10 \mathrm{~mol} \mathrm{H}_{2}}=0.89
$$

(b) The conversion of $\mathrm{CH}_{4}(\mathrm{~g})$ to $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$ is favored at low pressures, since the conversion reaction has a larger sum of the stoichiometric coefficients of gaseous products (4) than of reactants (2).
(c) Initially, all concentrations are halved when the mixture is transferred to a flask that is twice as large. To re-establish equilibrium, the system reacts to the right, forming more moles of gas (to compensate for the drop in pressure). We base our solution on the balanced chemical equation, in the manner we have used before.

Equation:	$2 \mathrm{CH}_{4}(\mathrm{~g})$	\rightleftharpoons	$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
	+	$3 \mathrm{H}_{2}$	
Initial:	$\frac{0.10 \mathrm{~mol}}{2.00 \mathrm{~L}}$	$\frac{1.5 \mathrm{~mol}}{2.00 \mathrm{~L}}$	$\frac{0.10 \mathrm{~mol}}{2.00 \mathrm{~L}}$
	$=0.050 \mathrm{M}$	$=0.75 \mathrm{M}$	$=0.050 \mathrm{M}$
Changes:	$-2 x \mathrm{M}$	$+x \mathrm{M}$	$+3 x \mathrm{M}$
Equil:	$(0.050-2 x) \mathrm{M}$	$(0.0750+x) \mathrm{M}$	$(0.050+3 x) \mathrm{M}$
$K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]^{2}}=\frac{(0.050+3 x)^{3}(0.750+x)}{(0.050-2 x)^{2}}=0.154$			

We can solve this $4^{\text {th }}$-order equation by successive approximations.
First guess: $x=0.010 \mathrm{M}$.

$$
\begin{aligned}
& x=0.010 \quad Q_{\mathrm{c}}=\frac{(0.050+3(0.010))^{3}(0.750+0.010)}{(0.050-2(0.010))^{2}}=\frac{(0.080)^{3}(0.760)}{(0.030)^{2}}=0.433>0.154 \\
& x=0.020 \quad Q_{\mathrm{c}}=\frac{(0.050+3(0.020))^{3}(0.750+0.020)}{(0.050-2(0.020))^{2}}=\frac{(0.110)^{3}(0.770)}{(0.010)^{2}}=10.2>0.154 \\
& x=0.005 \quad Q_{\mathrm{c}}=\frac{(0.050+3(0.005))^{3}(0.750+0.005)}{(0.050-2(0.005))^{2}}=\frac{(0.065)^{3}(0.755)}{(0.040)^{2}}=0.129<0.154 \\
& x=0.006 \quad Q_{\mathrm{c}}=\frac{(0.050+3(0.006))^{3}(0.750+0.006)}{(0.050-2(0.006))^{2}}=\frac{(0.068)^{3}(0.756)}{(0.038)^{2}}=0.165>0.154
\end{aligned}
$$

This is the maximum number of significant figures our system permits. We have $x=0.006 \mathrm{M} .\left[\mathrm{CH}_{4}\right]=0.038 \mathrm{M} ;\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=0.756 \mathrm{M} ;\left[\mathrm{H}_{2}\right]=0.068 \mathrm{M}$
Because the container volume is 2.00 L , the molar amounts are double the values of molarities.
$2.00 \mathrm{~L} \times \frac{0.756 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}}{1 \mathrm{~L}}=1.51 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2} \quad 2.00 \mathrm{~L} \times \frac{0.038 \mathrm{~mol} \mathrm{CH}_{4}}{1 \mathrm{~L}}=0.076 \mathrm{~mol} \mathrm{CH}_{4}$
$2.00 \mathrm{~L} \times \frac{0.068 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~L}}=0.14 \mathrm{~mol} \mathrm{H}_{2}$
Thus, the increase in volume results in the production of some additional $\mathrm{C}_{2} \mathrm{H}_{2}$.
27. (M)
(a)

$$
K_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}=\frac{\frac{n\{\mathrm{CO}\}}{\mathrm{V}} \times \frac{n\left\{\mathrm{H}_{2} \mathrm{O}\right\}}{\mathrm{V}}}{\frac{n\left\{\mathrm{CO}_{2}\right\}}{\mathrm{V}} \times \frac{n\left\{\mathrm{H}_{2}\right\}}{\mathrm{V}}}
$$

Since V is present in both the denominator and the numerator, it can be stricken from the expression. This happens here because $\Delta \mathrm{n}_{\mathrm{g}}=0$. Therefore, K_{c} is independent of V .
(b) Note that $K_{\mathrm{p}}=K_{\mathrm{c}}$ for this reaction, since $\Delta n_{\text {gas }}=0$.

$$
K_{\mathrm{c}}=K_{\mathrm{p}}=\frac{0.224 \mathrm{~mol} \mathrm{CO} \times 0.224 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.276 \mathrm{~mol} \mathrm{CO}_{2} \times 0.276 \mathrm{~mol} \mathrm{H}_{2}}=0.659
$$

28. (M) For the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ the value of $\mathrm{K}_{\mathrm{p}}=23.2$

The expression for Q_{p} is $\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$. Consider each of the provided situations
(a) $\mathrm{P}_{\mathrm{CO}}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{P}_{\mathrm{H}_{2}}=\mathrm{P}_{\mathrm{CO}_{2}} ; \quad Q_{\mathrm{p}}=1$ Not an equilibrium position
(b) $\quad \frac{\mathrm{P}_{\mathrm{H}_{2}}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\mathrm{P}_{\mathrm{CO}_{2}}}{\mathrm{P}_{\mathrm{CO}}}=x ; \quad \quad Q_{\mathrm{p}}=x^{2} \quad$ If $x=\sqrt{23.2}$, this is an equilibrium position.
(c) $\left(\mathrm{P}_{\mathrm{CO}} \times \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)=\left(\mathrm{P}_{\mathrm{CO}_{2}} \times \mathrm{P}_{\mathrm{H}_{2}}\right) ; Q_{\mathrm{p}}=1 \quad$ Not an equilibrium position
(d) $\quad \frac{\mathrm{P}_{\mathrm{H}_{2}}}{\mathrm{P}_{\mathrm{CO}}}=\frac{\mathrm{P}_{\mathrm{CO}_{2}}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}=x ; \quad \quad Q_{\mathrm{p}}=x^{2} \quad$ If $x=\sqrt{23.2}$, this is an equilibrium position.

Direction and Extent of Chemical Change

29. (M) We compute the value of Q_{c} for the given amounts of product and reactants.

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left(\frac{1.8 \mathrm{~mol} \mathrm{SO}_{3}}{7.2 \mathrm{~L}}\right)^{2}}{\left(\frac{3.6 \mathrm{~mol} \mathrm{SO}}{2.2 \mathrm{~L}}\right)^{2} \frac{2.2 \mathrm{~mol} \mathrm{O}_{2}}{7.2 \mathrm{~L}}}=0.82<K_{\mathrm{c}}=100
$$

The mixture described cannot be maintained indefinitely. In fact, because $Q_{c}<K_{\mathrm{c}}$, the reaction will proceed to the right, that is, toward products, until equilibrium is established. We do not know how long it will take to reach equilibrium.
30. (M) We compute the value of Q_{c} for the given amounts of product and reactants.

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{\left(\frac{0.0205 \mathrm{~mol} \mathrm{NO}_{2}}{5.25 \mathrm{~L}}\right)^{2}}{\frac{0.750 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{5.25 \mathrm{~L}}}=1.07 \times 10^{-4}<\mathrm{K}_{\mathrm{c}}=4.61 \times 10^{-3}
$$

The mixture described cannot be maintained indefinitely. In fact, because $Q_{\mathrm{c}}<K_{\mathrm{c}}$, the reaction will proceed to the right, that is, toward products, until equilibrium is established. If E_{a} is large, however, it may take some time to reach equilibrium.
31. (M)
(a) We determine the concentration of each species in the gaseous mixture, use these concentrations to determine the value of the reaction quotient, and compare this value of Q_{c} with the value of K_{c}.

$$
\begin{array}{ll}
{\left[\mathrm{SO}_{2}\right]=\frac{0.455 \mathrm{~mol} \mathrm{SO}_{2}}{1.90 \mathrm{~L}}=0.239 \mathrm{M}} & {\left[\mathrm{O}_{2}\right]=\frac{0.183 \mathrm{~mol} \mathrm{O}_{2}}{1.90 \mathrm{~L}}=0.0963 \mathrm{M}} \\
{\left[\mathrm{SO}_{3}\right]=\frac{0.568 \mathrm{~mol} \mathrm{SO}_{3}}{1.90 \mathrm{~L}}=0.299 \mathrm{M}} & Q_{c}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{(0.299)^{2}}{(0.239)^{2} 0.0963}=16.3
\end{array}
$$

Since $Q_{\mathrm{c}}=16.3 \neq 2.8 \times 10^{2}=K_{\mathrm{c}}$, this mixture is not at equilibrium.
(b) Since the value of Q_{c} is smaller than that of K_{c}, the reaction will proceed to the right, forming product and consuming reactants to reach equilibrium.
32. (M) We compute the value of Q_{c}. Each concentration equals the mass (m) of the substance divided by its molar mass and further divided by the volume of the container.

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{\frac{m \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.0 \mathrm{~g} \mathrm{CO}_{2}}}{V} \times \frac{m \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.0 \mathrm{~g} \mathrm{H}_{2}}}{\frac{V}{m \times \frac{1 \mathrm{~mol} \mathrm{CO}}{28.0 \mathrm{~g} \mathrm{CO}}} \frac{V}{V} \times \frac{1}{m \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}}}=\frac{\frac{1}{V}}{\frac{44.0 \times 2.0}{1}} \frac{28.0 \times 18.0}{28.0 \times 18.0}}{44.0 \times 2.0}=5.7<31.4\left(\text { value of } K_{\mathrm{c}}\right)
$$

(In evaluating the expression above, we cancelled the equal values of V, along with, the equal values of m.) Because the value of Q_{c} is smaller than the value of K_{c}, (a) the reaction is not at equilibrium and (b) the reaction will proceed to the right (formation of products) to reach a state of equilibrium.
33. (M) The information for the calculation is organized around the chemical equation. Let $x=\mathrm{mol} \mathrm{H}_{2}\left(\right.$ or $\left.\mathrm{I}_{2}\right)$ that reacts. Then use stoichiometry to determine the amount of HI formed, in terms of x, and finally solve for x.
$\begin{array}{llll} & \\ \text { Equation: } & \mathrm{H}_{2}(\mathrm{~g}) \\ \text { Initial: } & 0.150 \mathrm{~mol} & \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons & 0.150 \mathrm{~mol}(\mathrm{~g}) \\ \text { Changes: } & -x \mathrm{~mol} & 0.000 \mathrm{~mol} \\ \text { Equil: } & 0.150-x & -x \mathrm{~mol} & +2 x \mathrm{~mol} \\ \text { Equ } & 0.150-x & 2 x\end{array}$
Then take the square root of both sides: $\sqrt{K_{\mathrm{c}}}=\sqrt{50.2}=\frac{2 x}{0.150-x}=7.09$
$2 x=1.06-7.09 x \quad x=\frac{1.06}{9.09}=0.117 \mathrm{~mol}$, amount $\mathrm{HI}=2 x=2 \times 0.117 \mathrm{~mol}=0.234 \mathrm{~mol} \mathrm{HI}$ amount $\mathrm{H}_{2}=$ amount $\mathrm{I}_{2}=(0.150-x) \mathrm{mol}=(0.150-0.117) \mathrm{mol}=0.033 \mathrm{~mol} \mathrm{H}_{2}\left(\right.$ or $\left.\mathrm{I}_{2}\right)$
34. (M) We use the balanced chemical equation as a basis to organize the information

Equation: $\quad \mathrm{SbCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{SbCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Initial:

0.00 mol	0.280 mol	0.160 mol
2.50 L	2.50 L	2.50 L
0.000 M	0.112 M	0.0640 M
$+\chi \mathrm{M}$	$-x \mathrm{M}$	$-x \mathrm{M}$

$\begin{array}{lccc}\text { Initial: } & 0.000 \mathrm{M} & 0.112 \mathrm{M} & 0.0640 \mathrm{M} \\ \text { Changes: } & +x \mathrm{M} & -x \mathrm{M} & -x \mathrm{M}\end{array}$
Equil: $\quad x \mathrm{M} \quad(0.112-x) \mathrm{M} \quad(0.0640-x) \mathrm{M}$

$$
\begin{aligned}
& K_{\mathrm{c}}=0.025=\frac{\left[\mathrm{SbCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{SbCl}_{5}\right]}=\frac{(0.112-x)(0.0640-x)}{x}=\frac{0.00717-0.176 x+x^{2}}{x} \\
& 0.025 x=0.00717-0.176 x+x^{2} \quad x^{2}-0.201 x+0.00717=0 \\
& x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}=\frac{0.201 \pm \sqrt{0.0404-0.0287}}{2}=0.0464 \text { or } 0.155
\end{aligned}
$$

The second of the two values for x gives a negative value of $\left[\mathrm{Cl}_{2}\right](=-0.091 \mathrm{M})$, and thus is physically meaningless in our universe. Thus, concentrations and amounts follow.
$\left[\mathrm{SbCl}_{5}\right]=x=0.0464 \mathrm{M}$
$\left[\mathrm{SbCl}_{3}\right]=0.112-x=0.066 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]=0.0640-x=0.0176 \mathrm{M}$
amount $\mathrm{SbCl}_{5}=2.50 \mathrm{~L} \times 0.0464 \mathrm{M}=0.116 \mathrm{~mol} \mathrm{SbCl}_{5}$
amount $\mathrm{SbCl}_{3}=2.50 \mathrm{~L} \times 0.066 \mathrm{M}=0.17 \mathrm{~mol} \mathrm{SbCl}_{3}$
amount $\mathrm{Cl}_{2}=2.50 \mathrm{~L} \times 0.0176 \mathrm{M}=0.0440 \mathrm{~mol} \mathrm{Cl}_{2}$
35. (M) We use the chemical equation as a basis to organize the information provided about the reaction, and then determine the final number of moles of $\mathrm{Cl}_{2}(\mathrm{~g})$ present.
$\begin{array}{lccc}\text { Equation: } \mathrm{CO}(\mathrm{g})+ & \mathrm{Cl}_{2}(\mathrm{~g}) & \mathrm{COCl}_{2}(\mathrm{~g}) \\ \text { Initial: } 0.3500 \mathrm{~mol} & 0.0000 \mathrm{~mol} & 0.05500 \mathrm{~mol} \\ \text { Changes: }+x \mathrm{~mol} & +x \mathrm{~mol} & & -x \mathrm{~mol}\end{array}$
Equil.: $(0.3500+x) \mathrm{mol} \quad x \mathrm{~mol} \quad(0.05500-x) \mathrm{mol}$
$K_{\mathrm{c}}=1.2 \times 10^{3}=\frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]}=\frac{\frac{(0.0550-x) \mathrm{mol}}{3.050 \mathrm{~L}}}{\frac{(0.3500+x) \mathrm{mol}}{3.050 \mathrm{~L}} \times \frac{x \mathrm{~mol}}{3.050 \mathrm{~L}}}$
$\frac{1.2 \times 10^{3}}{3.050}=\frac{0.05500-x}{(0.3500+x) x} \quad$ Assume $x \ll 0.0550$ This produces the following expression.
$\frac{1.2 \times 10^{3}}{3.050}=\frac{0.05500}{0.3500 x} \quad x=\frac{3.050 \times 0.05500}{0.3500 \times 1.2 \times 10^{3}}=4.0 \times 10^{-4} \mathrm{~mol} \mathrm{Cl}_{2}$
We use the first value we obtained, $4.0 \times 10^{-4}(=0.00040)$, to arrive at a second value.
$x=\frac{3.050 \times(0.0550-0.00040)}{(0.3500+0.00040) \times 1.2 \times 10^{3}}=4.0 \times 10^{-4} \mathrm{~mol} \mathrm{Cl}_{2}$
Because the value did not change on the second iteration, we have arrived at a solution.
36. (M) Compute the initial concentration of each species present. Then determine the equilibrium concentrations of all species. Finally, compute the mass of CO_{2} present at equilibrium.

$$
\begin{aligned}
& {[\mathrm{CO}]_{\text {int }}=\frac{1.00 \mathrm{~g}}{1.41 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{CO}}{28.01 \mathrm{~g} \mathrm{CO}}=0.0253 \mathrm{M} \quad\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{int}}=\frac{1.00 \mathrm{~g}}{1.41 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0394 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]_{\text {int }}=\frac{1.00 \mathrm{~g}}{1.41 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}=0.352 \mathrm{M}}
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{1.852 \pm \sqrt{3.430-2.051}}{44.4}=0.0682 \mathrm{M}, 0.0153 \mathrm{M}
$$

The first value of x gives negative concentrations for reactants $\left([\mathrm{CO}]=-0.0429 \mathrm{M}\right.$ and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ $=-0.0288 \mathrm{M})$. Thus, $x=0.0153 \mathrm{M}=\left[\mathrm{CO}_{2}\right]$. Now we can find the mass of CO_{2}.
$1.41 \mathrm{~L} \times \frac{0.0153 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~L} \text { mixture }} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.949 \mathrm{~g} \mathrm{CO}_{2}$
37. (D) We base each of our solutions on the balanced chemical equation.
(a) Equation: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Initial : $\frac{0.550 \mathrm{~mol}}{2.50 \mathrm{~L}} \quad \frac{0.550 \mathrm{~mol}}{2.50 \mathrm{~L}} \quad \frac{0 \mathrm{~mol}}{2.50 \mathrm{~L}}$

Changes: $\frac{-x \mathrm{~mol}}{2.50 \mathrm{~L}} \quad \frac{+x \mathrm{~mol}}{2.50 \mathrm{~L}} \quad \frac{+x \mathrm{~mol}}{2.50 \mathrm{~L}}$
Equil: $\quad \frac{(0.550-x) \mathrm{mol}}{2.50 \mathrm{~L}} \quad \frac{(0.550+x) \mathrm{mol}}{2.50 \mathrm{~L}} \quad \frac{x \mathrm{~mol}}{2.50 \mathrm{~L}}$
$K_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=3.8 \times 10^{-2}=\frac{\frac{(0.550+x) \mathrm{mol}}{2.50 \mathrm{~L}} \times \frac{x \mathrm{~mol}}{2.50 \mathrm{~L}}}{\frac{(0.550-x) \mathrm{mol}}{2.50 \mathrm{~L}}} \quad \frac{x(0.550+x)}{2.50(0.550-x)}=3.8 \times 10^{-2}$
$x^{2}+0.550 x=0.052-0.095 x \quad x^{2}+0.645 x-0.052=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0.645 \pm \sqrt{0.416+0.208}}{2}=0.0725 \mathrm{~mol},-0.717 \mathrm{~mol}$
The second answer gives a negative quantity. of Cl_{2}, which makes no physical sense.

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{PCl}_{5}}=(0.550-0.0725)=0.478 \mathrm{~mol} \mathrm{PCl}_{5} \quad \mathrm{n}_{\mathrm{PCl}_{3}}=(0.550+0.0725)=0.623 \mathrm{~mol} \mathrm{PCl}_{3} \\
& \mathrm{n}_{\mathrm{Cl}_{2}}=x=0.0725 \mathrm{~mol} \mathrm{Cl}_{2}
\end{aligned}
$$

(b) Equation: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g}) \quad+\quad \mathrm{Cl}_{2}(\mathrm{~g})$
Initial: $\frac{0.610 \mathrm{~mol}}{2.50 \mathrm{~L}} \quad 0 \mathrm{M} \quad 0 \mathrm{M}$

Changes : $\frac{-x \mathrm{~mol}}{2.50 \mathrm{~L}} \quad \frac{+x \mathrm{~mol}}{2.50 \mathrm{~L}} \quad \frac{+x \mathrm{~mol}}{2.50 \mathrm{~L}}$
Equil : $\quad \frac{0.610-x \mathrm{~mol}}{2.50 \mathrm{~L}} \quad \frac{(x \mathrm{~mol})}{2.50 \mathrm{~L}} \quad \frac{(x \mathrm{~mol})}{2.50 \mathrm{~L}}$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=3.8 \times 10^{-2}=\frac{\frac{(x \mathrm{~mol})}{2.50 \mathrm{~L}} \times \frac{(x \mathrm{~mol})}{2.50 \mathrm{~L}}}{\frac{0.610-x \mathrm{~mol}}{2.50 \mathrm{~L}}}
$$

$$
2.50 \times 3.8 \times 10^{-2}=\frac{x^{2}}{0.610-x}=0.095 \quad 0.058-0.095 x=x^{2} \quad x^{2}+0.095 x-0.058=0
$$

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0.095 \pm \sqrt{0.0090+0.23}}{2}=0.20 \mathrm{~mol},-0.29 \mathrm{~mol}$
amount $\mathrm{PCl}_{3}=0.20 \mathrm{~mol}=$ amount Cl_{2}; amount $\mathrm{PCl}_{5}=0.610-0.20=0.41 \mathrm{~mol}$
38. (D)
(a) We use the balanced chemical equation as a basis to organize the information we have about the reactants and products.

| Equation: | $2 \mathrm{COF}_{2}(\mathrm{~g})$ | $\rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$ | $+\mathrm{CF}_{4}(\mathrm{~g})$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial: | $\frac{0.145 \mathrm{~mol}}{5.00 \mathrm{~L}}$ | $\frac{0.262 \mathrm{~mol}}{5.00 \mathrm{~L}}$ | $\frac{0.074 \mathrm{~mol}}{5.00 \mathrm{~L}}$ |
| Initial: | 0.0290 M | 0.0524 M | 0.0148 M |

And we now compute a value of Q_{c} and compare it to the given value of K_{c}.

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{CF}_{4}\right]}{\left[\mathrm{COF}_{2}\right]^{2}}=\frac{(0.0524)(0.0148)}{(0.0290)^{2}}=0.922<2.00=K_{\mathrm{c}}
$$

Because Q_{c} is not equal to K_{c}, the mixture is not at equilibrium.
(b) Because Q_{c} is smaller than K_{c}, the reaction will shift right, that is, products will be formed at the expense of COF_{2}, to reach a state of equilibrium.
(c) We continue the organization of information about reactants and products.

Equation:	$2 \mathrm{COF}_{2}(\mathrm{~g}) \rightleftharpoons$	$\mathrm{CO}_{2}(\mathrm{~g})$	+	$\mathrm{CF}_{4}(\mathrm{~g})$
Initial:	0.0290 M	0.0524 M	0.0148 M	
Changes:	$-2 x \mathrm{M}$	$+x \mathrm{M}$	$+x \mathrm{M}$	
Equil:	$(0.0290-2 x) \mathrm{M}$	$(0.0524+x) \mathrm{M}$		$(0.0148+x) \mathrm{M}$

$$
\begin{aligned}
& K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{CF}_{4}\right]}{\left[\mathrm{COF}_{2}\right]^{2}}=\frac{(0.0524+x)(0.0148+x)}{(0.0290-2 x)^{2}}=2.00=\frac{0.000776+0.0672 x+x^{2}}{0.000841-0.1160 x+4 x^{2}} \\
& 0.00168-0.232 x+8 x^{2}=0.000776+0.0672 x+x^{2} \quad 7 x^{2}-0.299 x+0.000904=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{0.299 \pm \sqrt{0.0894-0.0253}}{14}=0.0033 \mathrm{M}, 0.0394 \mathrm{M}
\end{aligned}
$$

The second of these values for $x(0.0394)$ gives a negative $\left[\mathrm{COF}_{2}\right](=-0.0498 \mathrm{M})$, clearly a nonsensical result. We now compute the concentration of each species at equilibrium, and check to ensure that the equilibrium constant is satisfied.

$$
\begin{aligned}
& {\left[\mathrm{COF}_{2}\right]=0.0290-2 x=0.0290-2(0.0033)=0.0224 \mathrm{M}} \\
& {\left[\mathrm{CO}_{2}\right]=0.0524+x=0.0524+0.0033=0.0557 \mathrm{M}} \\
& {\left[\mathrm{CF}_{4}\right]=0.0148+x=0.0148+0.0033=0.0181 \mathrm{M}} \\
& K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{CF}_{4}\right]}{\left[\mathrm{COF}_{2}\right]^{2}}=\frac{0.0557 \mathrm{M} \times 0.0181 \mathrm{M}}{(0.0224 \mathrm{M})^{2}}=2.01
\end{aligned}
$$

The agreement of this value of K_{c} with the cited value (2.00) indicates that this solution is correct. Now we determine the number of moles of each species at equilibrium.
$\mathrm{mol} \mathrm{COF}_{2}=5.00 \mathrm{~L} \times 0.0224 \mathrm{M}=0.112 \mathrm{~mol} \mathrm{COF}_{2}$ $\mathrm{mol} \mathrm{CO}_{2}=5.00 \mathrm{~L} \times 0.0557 \mathrm{M}=0.279 \mathrm{~mol} \mathrm{CO}_{2}$
$\mathrm{mol} \mathrm{CF} 4=5.00 \mathrm{~L} \times 0.0181 \mathrm{M}=0.0905 \mathrm{~mol} \mathrm{CF}_{4}$
But suppose we had incorrectly concluded, in part (b), that reactants would be formed in reaching equilibrium. What result would we obtain? The set-up follows.

Equation :	$2 \mathrm{COF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$	$+\quad \mathrm{CF}_{4}(\mathrm{~g})$	
Initial :	0.0290 M	0.0524 M	0.0148 M
Changes:	$+2 y \mathrm{M}$	$-y \mathrm{M}$	$-y \mathrm{M}$
Equil:	$(0.0290+2 y) \mathrm{M}$	$(0.0524-y) \mathrm{M}$	$(0.0148-y) \mathrm{M}$

$$
\begin{aligned}
& K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{CF}_{4}\right]}{\left[\mathrm{COF}_{2}\right]^{2}}=\frac{(0.0524-y)(0.0148-y)}{(0.0290+2 y)^{2}}=2.00=\frac{0.000776-0.0672 y+y^{2}}{0.000841+0.1160 y+4 y^{2}} \\
& 0.00168+0.232 y+8 y^{2}=0.000776-0.0672 y+y^{2} \quad 7 y^{2}+0.299 y+0.000904=0 \\
& y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0.299 \pm \sqrt{0.0894-0.0253}}{14}=-0.0033 \mathrm{M},-0.0394 \mathrm{M}
\end{aligned}
$$

The second of these values for $x(-0.0394)$ gives a negative $\left[\mathrm{COF}_{2}\right](=-0.0498 \mathrm{M})$, clearly a nonsensical result. We now compute the concentration of each species at equilibrium, and check to ensure that the equilibrium constant is satisfied.
$\left[\mathrm{COF}_{2}\right]=0.0290+2 y=0.0290+2(-0.0033)=0.0224 \mathrm{M}$
$\left[\mathrm{CO}_{2}\right]=0.0524-y=0.0524+0.0033=0.0557 \mathrm{M}$
$\left[\mathrm{CF}_{4}\right]=0.0148-y=0.0148+0.0033=0.0181 \mathrm{M}$
These are the same equilibrium concentrations that we obtained by making the correct decision regarding the direction that the reaction would take. Thus, you can be assured that, if you perform the algebra correctly, it will guide you even if you make the incorrect decision about the direction of the reaction.
39. (D)
(a) We calculate the initial amount of each substance.

$$
\begin{aligned}
& n\left\{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right\}=17.2 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{46.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=0.373 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right\}=23.8 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{60.05 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}=0.396 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \\
& n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right\}=48.6 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}}{88.11 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}} \\
& n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right\}=0.552 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \\
& n\left\{\mathrm{H}_{2} \mathrm{O}\right\}=71.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=3.95 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Since we would divide each amount by the total volume, and since there are the same numbers of product and reactant stoichiometric coefficients, we can use moles rather than concentrations in the Q_{c} expression.

$$
Q_{\mathrm{c}}=\frac{n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right\} n\left\{\mathrm{H}_{2} \mathrm{O}\right\}}{n\left\{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right\} n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right\}}=\frac{0.552 \mathrm{~mol} \times 3.95 \mathrm{~mol}}{0.373 \mathrm{~mol} \times 0.396 \mathrm{~mol}}=14.8>K_{\mathrm{c}}=4.0
$$

Since $Q_{\mathrm{c}}>K_{\mathrm{c}}$ the reaction will shift to the left, forming reactants, as it attains equilibrium.

Equation:	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+$	$\mathrm{H}_{2} \mathrm{O}$
Initial	0.373 mol	0.396 mol	0.552 mol	3.95 mol
Changes	$+x \mathrm{~mol}$	+ x mol	$-x \mathrm{~mol}$	$-x$ mol
Equil	($0.373+x$) mol	$(0.396+x) \mathrm{mol}$	(0.552-x) mol	(3.95-x) mol

$K_{c}=\frac{(0.552-x)(3.95-x)}{(0.373+x)(0.396+x)}=\frac{2.18-4.50 x+x^{2}}{0.148+0.769 x+x^{2}}=4.0$
$x^{2}-4.50 x+2.18=4 x^{2}+3.08 x+0.59 \quad 3 x^{2}+7.58 x-1.59=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-7.58 \pm \sqrt{57+19}}{6}=0.19$ moles, -2.72 moles
Negative amounts do not make physical sense. We compute the equilibrium amount of each substance with $x=0.19$ moles.

$$
\begin{aligned}
& n\left\{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right\}=0.373 \mathrm{~mol}+0.19 \mathrm{~mol}=0.56 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& \operatorname{mass} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=0.56 \mathrm{~mol} \mathrm{C} \mathrm{C}_{2} \mathrm{OH} \times \frac{46.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=26 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right\}=0.396 \mathrm{~mol}+0.19 \mathrm{~mol}=0.59 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \\
& \text { mass CH} 3 \mathrm{CO}_{2} \mathrm{H}=0.59 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \times \frac{60.05 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}=35 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \\
& n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right\}=0.552 \mathrm{~mol}-0.19 \mathrm{~mol}=0.36 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \\
& \operatorname{mass\mathrm {CH}_{3}\mathrm {CO}_{2}\mathrm {C}_{2}\mathrm {H}_{5}=0.36\mathrm {mol}\mathrm {CH}_{3}\mathrm {CO}_{2}\mathrm {C}_{2}\mathrm {H}_{5}\times \frac {88.10\mathrm {g}\mathrm {CH}_{3}\mathrm {CO}_{2}\mathrm {C}_{2}\mathrm {H}_{5}}{1\mathrm {mol}\mathrm {CH}_{3}\mathrm {CO}_{2}\mathrm {C}_{2}\mathrm {H}_{5}}=32\mathrm {g}\mathrm {CH}_{3}\mathrm {CO}_{2}\mathrm {C}_{2}\mathrm {H}_{5}} \\
& n\left\{\mathrm{H}_{2} \mathrm{O}\right\}=3.95 \mathrm{~mol}-0.19 \mathrm{~mol}=3.76 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& \text { mass } \mathrm{H}_{2} \mathrm{O}=3.76 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

$$
\text { To check } K_{\mathrm{c}}=\frac{n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right\} n\left\{\mathrm{H}_{2} \mathrm{O}\right\}}{n\left\{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right\} n\left\{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right\}}=\frac{0.36 \mathrm{~mol} \times 3.76 \mathrm{~mol}}{0.56 \mathrm{~mol} \times 0.59 \mathrm{~mol}}=4.1
$$

40. (M) The final volume of the mixture is $0.750 \mathrm{~L}+2.25 \mathrm{~L}=3.00 \mathrm{~L}$. Then use the balanced chemical equation to organize the data we have concerning the reaction. The reaction should shift to the right, that is, form products in reaching a new equilibrium, since the volume is greater.

Equation:	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{NO}_{2}(\mathrm{~g})$
Initial:	$\frac{0.971 \mathrm{~mol}}{3.00 \mathrm{~L}}$		$\frac{0.0580 \mathrm{~mol}}{3.00 \mathrm{~L}}$
Initial:	0.324 M		0.0193 M
Changes:	$-x \mathrm{M}$		$+2 x \mathrm{M}$
Equil :	$(0.324-x) \mathrm{M}$	$(0.0193+2 x) \mathrm{M}$	

$K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(0.0193+2 x)^{2}}{0.324-x}=\frac{0.000372+0.0772 x+4 x^{2}}{0.324-x}=4.61 \times 10^{-3}$
$0.000372+0.0772 x+4 x^{2}=0.00149-0.00461 x \quad 4 x^{2}+0.0818 x-0.00112=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0.0818 \pm \sqrt{0.00669+0.0179}}{8}=0.00938 \mathrm{M},-0.0298 \mathrm{M}$
$\left[\mathrm{NO}_{2}\right]=0.0193+(2 \times 0.00938)=0.0381 \mathrm{M}$
amount $\mathrm{NO}_{2}=0.0381 \mathrm{M} \times 3.00 \mathrm{~L}=0.114 \mathrm{~mol} \mathrm{NO}_{2}$
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.324-0.00938=0.3146 \mathrm{M}$
amount $\mathrm{N}_{2} \mathrm{O}_{4}=0.3146 \mathrm{M} \times 3.00 \mathrm{~L}=0.944 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$
41. (M) $\left[\mathrm{HCONH}_{2}\right]_{\text {init }}=\frac{0.186 \mathrm{~mol}}{2.16 \mathrm{~L}}=0.0861 \mathrm{M}$

Equation:	$\mathrm{HCONH}_{2}(\mathrm{~g}) \rightleftharpoons$	$\mathrm{NH}_{3}(\mathrm{~g})+$	$\mathrm{CO}(\mathrm{g})$
Initial :	0.0861 M	0 M	0 M
Changes:	$-x \mathrm{M}$	$+x \mathrm{M}$	$+x \mathrm{M}$
Equil :	$(0.0861-x) \mathrm{M}$	$x \mathrm{M}$	$x \mathrm{M}$

$$
\begin{aligned}
& K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right][\mathrm{CO}]}{\left[\mathrm{HCONH}_{2}\right]}=\frac{x \cdot x}{0.0861-x}=4.84 \quad x^{2}=0.417-4.84 x \quad 0=x^{2}+4.84 x-0.417 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4.84 \pm \sqrt{23.4+1.67}}{2}=0.084 \mathrm{M},-4.92 \mathrm{M}
\end{aligned}
$$

The negative concentration obviously is physically meaningless. We determine the total concentration of all species, and then the total pressure with $x=0.084$.
$[$ total $]=\left[\mathrm{NH}_{3}\right]+[\mathrm{CO}]+\left[\mathrm{HCONH}_{2}\right]=x+x+0.0861-x=0.0861+0.084=0.170 \mathrm{M}$ $P_{\text {tot }}=0.170 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 400 . \mathrm{K}=5.58 \mathrm{~atm}$
42. (E) Compare Q_{p} to K_{p}. We assume that the added solids are of negligible volume so that the initial partial pressures of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ do not significantly change.
$P\left\{\mathrm{H}_{2} \mathrm{O}\right\}=\left(715 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}\right)=0.941 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}$
$Q_{\mathrm{p}}=P\left\{\mathrm{CO}_{2}\right\} P\left\{\mathrm{H}_{2} \mathrm{O}\right\}=2.10 \mathrm{~atm} \mathrm{CO}_{2} \times 0.941 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}=1.98>0.23=K_{p}$ Because Q_{p} is larger than K_{p}, the reaction will proceed left toward reactants to reach equilibrium. Thus, the partial pressures of the two gases will decrease.
43. (M)

We organize the solution around the balanced chemical equation.

Equation:	$2 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s})$	\rightleftharpoons	$2 \mathrm{Cr}^{2+}(\mathrm{aq})$	$+\mathrm{Cd}^{2+}(\mathrm{aq})$
Initial :	1.00 M		0 M	0 M
Changes:	$-2 x \mathrm{M}$		$+2 x$	$+x$
Equil:	$(1.00-2 x) \mathrm{M}$		$2 x$	x

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{Cr}^{2+}\right]^{2}\left[\mathrm{Cd}^{2+}\right]}{\left[\mathrm{Cr}^{3+}\right]^{2}}=\frac{(2 x)^{2}(x)}{(1.00-2 x)^{2}}=0.288
$$

Via successive approximations, one obtains $x=0.257 \mathrm{M}$

Therefore, at equilibrium, $\left[\mathrm{Cd}^{2+}\right]=0.257 \mathrm{M},\left[\mathrm{Cr}^{2+}\right]=0.514 \mathrm{M}$ and $\left[\mathrm{Cr}^{3+}\right]=0.486 \mathrm{M}$
Minimum mass of $\mathrm{Cd}(\mathrm{s})=0.350 \mathrm{~L} \times 0.257 \mathrm{M} \times 112.41 \mathrm{~g} / \mathrm{mol}=10.1 \mathrm{~g}$ of Cd metal
44. (M) Again we base the set-up of the problem around the balanced chemical equation.

Equation:	$\mathrm{Pb}(\mathrm{s})+2 \mathrm{Cr}^{3+}(\mathrm{aq})$	$\stackrel{K_{\mathrm{c}}=3.2 \times 10^{-10}}{\rightleftharpoons}$	$\mathrm{~Pb}^{2+}(\mathrm{aq})+$	$+2 \mathrm{Cr}^{2+}(\mathrm{aq})$
Initial:	$-\quad 0.100 \mathrm{M}$		0 M	0 M
Changes:	-	$-2 x \mathrm{M}$		$+x \mathrm{M}$

$K_{c}=\frac{x(2 x)^{2}}{(0.100)^{2}}=3.2 \times 10^{-10} \quad 4 x^{3}=(0.100)^{2} \times 3.2 \times 10^{-10}=3.2 \times 10^{-12}$
$x=\sqrt[3]{\frac{3.2 \times 10^{-12}}{4}}=9.3 \times 10^{-5} \mathrm{M} \quad$ Assumption that $2 x \ll 0.100$, is valid and thus
$\left[\mathrm{Pb}^{2+}\right]=x=9.3 \times 10^{-5} \mathrm{M},\left[\mathrm{Cr}^{2+}\right]=1.9 \times 10^{-4} \mathrm{M}$ and $\left[\mathrm{Cr}^{3+}\right]=0.100 \mathrm{M}$
45. (M) We are told in this question that the reaction $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ has $\mathrm{K}_{\mathrm{c}}=4.0$ at a certain temperature T. This means that at the temperature $T,\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]=4.0 \times$ $\left[\mathrm{Cl}_{2}\right] \times\left[\mathrm{SO}_{2}\right]$. Careful scrutiny of the three diagrams reveals that sketch (b) is the best representation because it contains numbers of $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{SO}_{2}$, and Cl_{2} molecules that are consistent with the K_{c} for the reaction. In other words, sketch (b) is the best choice because it contains $12 \mathrm{SO}_{2} \mathrm{Cl}_{2}$ molecules (per unit volume), $1 \mathrm{Cl}_{2}$ molecule (per unit volume) and $3 \mathrm{SO}_{2}$ molecules (per unit volume), which is the requisite number of each type of molecule needed to generate the expected K_{c} value for the reaction at temperature T.
46. (M) In this question we are told that the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g})$ has $K_{\mathrm{c}}=3.0$ at a certain temperature T. This means that at the temperature $T,[\mathrm{NOBr}]^{2}=3.0 \times$ $\left[\mathrm{Br}_{2}\right][\mathrm{NO}]^{2 .}$ Sketch (c) is the most accurate representation because it contains 18 NOBr molecules (per unit volume), 6 NO molecules (per unit volume), and $3 \mathrm{Br}_{2}$ molecules (per unit volume), which is the requisite number of each type of molecule needed to generate the expected K_{c} value for the reaction at temperature T.

47. (E)

$$
\begin{aligned}
& \mathrm{K}=\frac{[\text { aconitate }]}{[\text { citrate }]} \\
& \mathrm{Q}=\frac{4.0 \times 10^{-5}}{(0.00128)}=0.031
\end{aligned}
$$

Since $Q=K$, the reaction is at equilibrium,
48. (E)

$$
\begin{aligned}
& \left.\mathrm{K}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{NAD}_{\text {red }}\right][\text { oxoglut. }]}{[\text { citrate }][\mathrm{NAD}}{ }_{\text {ox }}\right] \\
& \mathrm{Q}=\frac{(0.00868)(0.00132)(0.00868)}{(0.00128)(0.00868)}=0.00895
\end{aligned}
$$

Since $\mathrm{Q}<\mathrm{K}$, the reaction needs to proceed to the right (products).

Partial Pressure Equilibrium Constant, $\boldsymbol{K}_{\mathbf{p}}$

49. (M) The $I_{2}(s)$ maintains the presence of I_{2} in the flask until it has all vaporized. Thus, if enough $\mathrm{HI}(\mathrm{g})$ is produced to completely consume the $\mathrm{I}_{2}(\mathrm{~s})$, equilibrium will not be achieved.
$P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}=747.6 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.9837 \mathrm{~atm}$
Equation: $\quad \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})+\mathrm{S}(\mathrm{s})$
Initial: $\quad 0.9837 \mathrm{~atm} \quad 0 \mathrm{~atm}$
Changes: $-x$ atm $\quad+2 x$ atm
Equil: $\quad(0.9837-x)$ atm $\quad 2 x$ atm

$$
\begin{aligned}
& K_{p}=\frac{P\{\mathrm{HI}\}^{2}}{P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}}=\frac{(2 x)^{2}}{(0.9837-x)}=1.34 \times 10^{-5}=\frac{4 x^{2}}{0.9837} \\
& x=\sqrt{\frac{1.34 \times 10^{-5} \times 0.9837}{4}}=1.82 \times 10^{-3} \mathrm{~atm}
\end{aligned}
$$

The assumption that $0.9837 \gg x$ is valid. Now we verify that sufficient $I_{2}(s)$ is present by computing the mass of I_{2} needed to produce the predicted pressure of $\mathrm{HI}(\mathrm{g})$. Initially, 1.85 g I_{2} is present (given).

$$
\begin{aligned}
& \text { mass } \mathrm{I}_{2}=\frac{1.82 \times 10^{-3} \mathrm{~atm} \times 0.725 \mathrm{~L}}{0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}}{ }^{-1} \mathrm{~K}^{-1} \times 333 \mathrm{~K}
\end{aligned} \frac{1 \mathrm{~mol} \mathrm{I}_{2}}{2 \mathrm{~mol} \mathrm{HI}} \times \frac{253.8 \mathrm{~g} \mathrm{I}_{2}}{1 \mathrm{~mol} \mathrm{I}_{2}}=0.00613 \mathrm{~g} \mathrm{I}_{2} \quad \begin{aligned}
& P_{\text {tot }}=P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}+P\{\mathrm{HI}\}=(0.9837-x)+2 x=0.9837+x=0.9837+0.00182=0.9855 \mathrm{~atm} \\
& P_{\text {tot }}=749.0 \mathrm{mmHg}
\end{aligned}
$$

50. (M) We first determine the initial pressure of NH_{3}.
$P\left\{\mathrm{NH}_{3}(\mathrm{~g})\right\}=\frac{n R T}{V}=\frac{0.100 \mathrm{~mol} \mathrm{NH}_{3} \times 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 298 \mathrm{~K}}{2.58 \mathrm{~L}}=0.948 \mathrm{~atm}$
Equation: $\quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g}) \quad+\quad \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
Initial:
Changes:
Equil:

0.948 atm	0 atm
$+x \mathrm{~atm}$	$+x \mathrm{~atm}$
$(0.948+x) \mathrm{atm}$	$x \mathrm{~atm}$

$K_{\mathrm{p}}=P\left\{\mathrm{NH}_{3}\right\} P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}=0.108=(0.948+x) x=0.948 x+x^{2} \quad 0=x^{2}+0.948 x-0.108$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0.948 \pm \sqrt{0.899+0.432}}{2}=0.103 \mathrm{~atm},-1.05 \mathrm{~atm}$
The negative root makes no physical sense. The total gas pressure is obtained as follows. $P_{\text {tot }}=P\left\{\mathrm{NH}_{3}\right\}+P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}=(0.948+x)+x=0.948+2 x=0.948+2 \times 0.103=1.154 \mathrm{~atm}$
51. (M) We substitute the given equilibrium pressure into the equilibrium constant expression and solve for the other equilibrium pressure. $K_{\mathrm{p}}=\frac{P\left\{\mathrm{O}_{2}\right\}^{3}}{P\left\{\mathrm{CO}_{2}\right\}^{2}}=28.5=\frac{P\left\{\mathrm{O}_{2}\right\}^{3}}{\left(0.0721 \mathrm{~atm} \mathrm{CO}_{2}\right)^{2}}$ $P\left\{\mathrm{O}_{2}\right\}=\sqrt[3]{P\left\{\mathrm{O}_{2}\right\}^{3}}=\sqrt[3]{28.5(0.0712 \mathrm{~atm})^{2}}=0.529 \mathrm{~atm} \mathrm{O}_{2}$ $P_{\text {total }}=P\left\{\mathrm{CO}_{2}\right\}+P\left\{\mathrm{O}_{2}\right\}=0.0721 \mathrm{~atm} \mathrm{CO}_{2}+0.529 \mathrm{~atm} \mathrm{O}_{2}=0.601 \mathrm{~atm}$ total
52. (M) The composition of dry air is given in volume percent. Division of these percentages by 100 gives the volume fraction, which equals the mole fraction and also the partial pressure in atmospheres, if the total pressure is 1.00 atm . Thus, we have $P\left\{\mathrm{O}_{2}\right\}=0.20946 \mathrm{~atm}$ and $P\left\{\mathrm{CO}_{2}\right\}=0.00036 \mathrm{~atm}$. We substitute these two values into the expression for Q_{p}.
$\left.\left.Q_{p}=\frac{P\left\{\mathrm{O}_{2}\right\}^{3}}{P\left\{\mathrm{CO}_{2}\right\}^{2}}=\frac{(0.20946 \mathrm{~atm} \mathrm{O}}{2}\right)^{3}{ }_{(0.00036 \mathrm{~atm} \mathrm{CO}}^{2}\right)^{2} \quad=6.4 \times 10^{4}>28.5=K_{\mathrm{p}}$
The value of Q_{p} is much larger than the value of K_{p}. Thus this reaction should be spontaneous in the reverse direction until equilibrium is achieved. It will only be spontaneous in the forward direction when the pressure of O_{2} drops or that of CO_{2} rises (as would be the case in self-contained breathing devices).

53. (M)

(a) We first determine the initial pressure of each gas.

$$
P\{\mathrm{CO}\}=P\left\{\mathrm{Cl}_{2}\right\}=\frac{n R T}{V}=\frac{1.00 \mathrm{~mol} \times 0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 668 \mathrm{~K}}{1.75 \mathrm{~L}}=31.3 \mathrm{~atm}
$$

Then we calculate equilibrium partial pressures, organizing our calculation around the balanced chemical equation. We see that the equilibrium constant is not very large, meaning that we must solve the polynomial exactly (or by successive approximations).
Equation
$\mathrm{CO}(\mathrm{g}) \quad+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g}) \quad K_{\mathrm{p}}=22.5$

Initial:	31.3 atm	31.3 atm	0 atm
Changes:	$-x \mathrm{~atm}$	$-x \mathrm{~atm}$	$+x \mathrm{~atm}$
Equil:	$31.3-x \mathrm{~atm}$	$31.3-x \mathrm{~atm}$	$x \mathrm{~atm}$

$K_{\mathrm{p}}=\frac{P\left\{\mathrm{COCl}_{2}\right\}}{P\{\mathrm{CO}\} P\left\{\mathrm{Cl}_{2}\right\}}=22.5=\frac{x}{(31.3-x)^{2}}=\frac{x}{\left(979 . \underline{7}-62.6 x+x^{2}\right)}$
$22.5\left(979 . \underline{7}-62.6 x+x^{2}\right)=x=220 \underline{43}-1408.5 x+22.5 x^{2}=x$
$220 \underline{43}-140 \underline{9.5 x}+22.5 x^{2}=0 \quad$ (Solve by using the quadratic equation)
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-1409.5) \pm \sqrt{(-1409.5)^{2}-4(22.5)(220 \underline{43})}}{2(22.5)}$
$x=\frac{1409.5 \pm \sqrt{2818}}{45}=30.1 \underline{4}, 32.5($ too large $)$
$P\{\mathrm{CO}\}=P\left\{\mathrm{Cl}_{2}\right\}=31.3 \mathrm{~atm}-30.1 \underline{4} \mathrm{~atm}=1.16 \mathrm{~atm} \quad P\left\{\mathrm{COCl}_{2}\right\}=30.1 \underline{4} \mathrm{~atm}$
(b) $P_{\text {total }}=P\{\mathrm{CO}\}+P\left\{\mathrm{Cl}_{2}\right\}+P\left\{\mathrm{COCl}_{2}\right\}=1.1 \underline{6} \mathrm{~atm}+1.1 \underline{6} \mathrm{~atm}+30.1 \underline{4} \mathrm{~atm}=32.46 \mathrm{~atm}$
54. (M) We first find the value of K_{p} for the reaction.
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \quad K_{\mathrm{c}}=1.8 \times 10^{-6}$ at $184{ }^{\circ} \mathrm{C}=457 \mathrm{~K}$.
For this reaction $\Delta n_{\text {gas }}=2+1-2=+1$.
$K_{p}=K_{c}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}=1.8 \times 10^{-6}(0.08206 \times 457)^{+1}=6.8 \times 10^{-5}$
To obtain the required reaction $\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$ from the initial reaction, that initial reaction must be reversed and then divided by two. Thus, in order to determine the value of the equilibrium constant for the final reaction, the value of K_{p} for the initial reaction must be inverted, and the square root taken of the result.

$$
K_{\mathrm{p}, \text { final }}=\sqrt{\frac{1}{6.8 \times 10^{-5}}}=1.2 \times 10^{2}
$$

Le Châtelier's Principle

55. (E) Continuous removal of the product, of course, has the effect of decreasing the concentration of the products below their equilibrium values. Thus, the equilibrium system is disturbed by removing the products and the system will attempt (in vain, as it turns out) to re-establish the equilibrium by shifting toward the right, that is, to generate more products.
56. (E) We notice that the density of the solid ice is smaller than is that of liquid water. This means that the same mass of liquid water is present in a smaller volume than an equal mass of ice. Thus, if pressure is placed on ice, attempting to force it into a smaller volume, the ice will be transformed into the less-space-occupying water at $0^{\circ} \mathrm{C}$. Thus, at $0^{\circ} \mathrm{C}$ under pressure, $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ will melt to form $\mathrm{H}_{2} \mathrm{O}(1)$. This behavior is not expected in most cases because generally a solid is more dense than its liquid phase.
57. (M)
(a) This reaction is exothermic with $\Delta H^{\circ}=-150 . \mathrm{kJ}$. Thus, high temperatures favor the reverse reaction (endothermic reaction). The amount of $\mathrm{H}_{2}(\mathrm{~g})$ present at high temperatures will be less than that present at low temperatures.
(b) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is one of the reactants involved. Introducing more will cause the equilibrium position to shift to the right, favoring products. The amount of $\mathrm{H}_{2}(\mathrm{~g})$ will increase.
(c) Doubling the volume of the container will favor the side of the reaction with the largest sum of gaseous stoichiometric coefficients. The sum of the stoichiometric coefficients of gaseous species is the same (4) on both sides of this reaction. Therefore, increasing the volume of the container will have no effect on the amount of $\mathrm{H}_{2}(\mathrm{~g})$ present at equilibrium.
(d) A catalyst merely speeds up the rate at which a reaction reaches the equilibrium position. The addition of a catalyst has no effect on the amount of $\mathrm{H}_{2}(\mathrm{~g})$ present at equilibrium.
58. (M)
(a) This reaction is endothermic, with $\Delta H^{\circ}=+92.5 \mathrm{~kJ}$. Thus, a higher temperature will favor the forward reaction and increase the amount of $\mathrm{HI}(\mathrm{g})$ present at equilibrium.
(b) The introduction of more product will favor the reverse reaction and decrease the amount of $\mathrm{HI}(\mathrm{g})$ present at equilibrium.
(c) The sum of the stoichiometric coefficients of gaseous products is larger than that for gaseous reactants. Increasing the volume of the container will favor the forward reaction and increase the amount of $\mathrm{HI}(\mathrm{g})$ present at equilibrium.
(d) A catalyst merely speeds up the rate at which a reaction reaches the equilibrium position. The addition of a catalyst has no effect on the amount of $\mathrm{HI}(\mathrm{g})$ present at equilibrium.
(e) The addition of an inert gas to the constant-volume reaction mixture will not change any partial pressures. It will have no effect on the amount of $\mathrm{HI}(\mathrm{g})$ present at equilibrium.
59. (M)
(a) The formation of $\mathrm{NO}(\mathrm{g})$ from its elements is an endothermic reaction $\left(\Delta H^{\circ}=+181\right.$ $\mathrm{kJ} / \mathrm{mol}$). Since the equilibrium position of endothermic reactions is shifted toward products at higher temperatures, we expect more $\mathrm{NO}(\mathrm{g})$ to be formed from the elements at higher temperatures.
(b) Reaction rates always are enhanced by higher temperatures, since a larger fraction of the collisions will have an energy that surmounts the activation energy. This enhancement of rates affects both the forward and the reverse reactions. Thus, the position of equilibrium is reached more rapidly at higher temperatures than at lower temperatures.
60. (M) If the reaction is endothermic $\left(\Delta \mathrm{H}^{\circ}>0\right)$, the forward reaction is favored at high temperatures. If the reaction is exothermic $\left(\Delta \mathrm{H}^{\circ}<0\right)$, the forward reaction is favored at low temperatures.
(a) $\Delta H^{\circ}=\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{PCl}_{5}(\mathrm{~g})\right]-\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{PCl}_{3}(\mathrm{~g})\right]-\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{Cl}_{2}(\mathrm{~g})\right]$
$\Delta H^{\circ}=-374.9 \mathrm{~kJ}-(-287.0 \mathrm{~kJ})-0.00 \mathrm{~kJ}=-87.9 \mathrm{~kJ} / \mathrm{mol} \quad$ (favored at low temperatures)
(b) $\quad \Delta H^{0}=2 \Delta H_{\mathrm{f}}^{0}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]+3 \Delta H_{\mathrm{f}}^{0}[\mathrm{~S}($ rhombic $)]-\Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{SO}_{2}(\mathrm{~g})\right]-2 \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\right]$
$\Delta H^{0}=2(-241.8 \mathrm{~kJ})+3(0.00 \mathrm{~kJ})-(-296.8 \mathrm{~kJ})-2(-20.63 \mathrm{~kJ})$
$\Delta H^{\circ}=-145.5 \mathrm{~kJ} / \mathrm{mol}$ (favored at low temperatures)
(c) $\Delta H^{\circ}=4 \Delta H_{\mathrm{f}}^{\mathrm{o}}[\mathrm{NOCl}(\mathrm{g})]+2 \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]$
$-2 \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{N}_{2}(\mathrm{~g})\right]-3 \Delta H_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{O}_{2}(\mathrm{~g})\right]-4 \Delta H_{\mathrm{f}}^{\mathrm{o}}[\mathrm{HCl}(\mathrm{g})]$
$\Delta H^{\circ}=4(51.71 \mathrm{~kJ})+2(-241.8 \mathrm{~kJ})-2(0.00 \mathrm{~kJ})-3(0.00 \mathrm{~kJ})-4(-92.31 \mathrm{~kJ})$
$\Delta H^{\circ}=+92.5 \mathrm{~kJ} / \mathrm{mol}$ (favored at higher temperatures)
61. (E) If the total pressure of a mixture of gases at equilibrium is doubled by compression, the equilibrium will shift to the side with fewer moles of gas to counteract the increase in pressure. Thus, if the pressure of an equilibrium mixture of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$, and $\mathrm{NH}_{3}(\mathrm{~g})$ is doubled, the reaction involving these three gases, i.e., $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, will proceed in the forward direction to produce a new equilibrium mixture that contains additional ammonia and less molecular nitrogen and molecular hydrogen. In other words, $\mathrm{P}\left\{\mathrm{N}_{2}(\mathrm{~g})\right\}$ will have decreased when equilibrium is re-established. It is important to note, however, that the final equilibrium partial pressure for the N_{2} will, nevertheless, be higher than its original partial pressure prior to the doubling of the total pressure.
62. (M)
(a) Because $\Delta H^{\circ}=0$, the position of the equilibrium for this reaction will not be affected by temperature. Since the equilibrium position is expressed by the value of the equilibrium constant, we expect K_{p} to be unaffected by, or to remain constant with, temperature.
(b) From part (a), we know that the value of K_{p} will not change when the temperature is changed. The pressures of the gases, however, will change with temperature. (Recall the ideal gas law: $P=n R T / V$.) In fact, all pressures will increase. The stoichiometric coefficients in the reaction are such that at higher pressures the formation of more reactant will be favored (the reactant side has fewer moles of gas). Thus, the amount of $\mathrm{D}(\mathrm{g})$ will be smaller when equilibrium is reestablished at the higher temperature for the cited reaction.

$$
\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{B}(\mathrm{~s})+2 \mathrm{C}(\mathrm{~g})+\frac{1}{2} \mathrm{D}(\mathrm{~g})
$$

63. (M) Increasing the volume of an equilibrium mixture causes that mixture to shift toward the side (reactants or products) where the sum of the stoichiometric coefficients of the gaseous species is the larger. That is: shifts to the right if $\Delta n_{\text {gas }}>0$, shifts to the left if $\Delta n_{\text {gas }}<0$, and does not shift if $\Delta n_{\text {gas }}=0$.
(a) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}), \Delta n_{\text {gas }}>0$, shift right, toward products
(b) $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta n_{\text {gas }}=0$, no shift, no change in equilibrium position.
(c) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \quad \Delta n_{\text {gas }}>0$, shifts right, towards products
64. (M) The equilibrium position for a reaction that is exothermic shifts to the left (reactants are favored) when the temperature is raised. For one that is endothermic, it shifts right (products are favored) when the temperature is raised.
(a) $\quad \mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H^{o}=-90.2 \mathrm{~kJ}$ shifts left, $\%$ dissociation \downarrow
(b) $\quad \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H^{o}=+98.9 \mathrm{~kJ}$ shifts right, $\%$ dissociation \uparrow
(c) $\quad \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-95.4 \mathrm{~kJ}$ shifts left, \% dissociation \downarrow
(d) $\quad \mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H^{o}=+108.3 \mathrm{~kJ}$ shifts right, $\%$ dissociation \uparrow
65. (E)
(a) $\mathrm{Hb}: \mathrm{O}_{2}$ is reduced, because the reaction is exothermic and heat is like a product.
(b) No effect, because the equilibrium involves $\mathrm{O}_{2}(\mathrm{aq})$. Eventually it will reduce the $\mathrm{Hb}: \mathrm{O}_{2}$ level because removing $\mathrm{O}_{2}(\mathrm{~g})$ from the atmosphere also reduces $\mathrm{O}_{2}(\mathrm{aq})$ in the blood.
(c) $\mathrm{Hb}: \mathrm{O}_{2}$ level increases to use up the extra Hb .
66. (E)
(a) $\mathrm{CO}_{2}(\mathrm{~g})$ increases as the equilibrium is pushed toward the reactant side
(b) Increase $\mathrm{CO}_{2}(\mathrm{aq})$ levels, which then pushes the equilibrium to the product side
(c) It has no effect, but it helps establish the final equilibrium more quickly
(d) CO_{2} increases, as the equilibrium shifts to the reactants
67. (E) The pressure on $\mathrm{N}_{2} \mathrm{O}_{4}$ will initially increase as the crystal melts and then vaporizes, but over time the new concentration decreases as the equilibrium is shifted toward NO_{2}.
68. (E) If the equilibrium is shifted to the product side by increasing temperature, that means that heat is a "reactant" (or being consumed). Therefore, HI decomposition is endothermic.
69. (E) Since $\Delta \mathrm{H}$ is >0, the reaction is endothermic. If we increase the temperature of the reaction, we are adding heat to the reaction, which shifts the reaction toward the decomposition of calcium carbonate. While the amount of calcium carbonate will decrease, its concentration will remain the same because it is a solid.
70. (E) The amount of N_{2} increases in the body. As the pressure on the body increases, the equilibrium shifts from N_{2} gas to N_{2} (aq).

Integrative and Advanced Exercises

71. (E) In a reaction of the type $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{I}(\mathrm{g})$ the bond between two iodine atoms, the $\mathrm{I}-\mathrm{I}$ bond, must be broken. Since $I_{2}(\mathrm{~g})$ is a stable molecule, this bond breaking process must be endothermic. Hence, the reaction cited is an endothermic reaction. The equilibrium position of endothermic reactions will be shifted toward products when the temperature is raised.
72. (M)
(a) In order to determine a value of K_{c}, we first must find the CO_{2} concentration in the gas phase. Note, the total volume for the gas is 1.00 L (moles and molarity are numerically equal)

$$
\left[\mathrm{CO}_{2}\right]=\frac{n}{V}=\frac{P}{R T}=\frac{1.00 \mathrm{~atm}}{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 298 \mathrm{~K}}=0.0409 \mathrm{M} \quad K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}(\mathrm{aq})\right]}{\left[\mathrm{CO}_{2}(\mathrm{~g})\right]}=\frac{3.29 \times 10^{-2} \mathrm{M}}{0.0409 \mathrm{M}}=0.804
$$

(b) It does not matter to which phase the radioactive ${ }^{14} \mathrm{CO}_{2}$ is added. This is an example of a Le Châtelier's principle problem in which the stress is a change in concentration of the reactant $\mathrm{CO}_{2}(\mathrm{~g})$. To find the new equilibrium concentrations, we must solve and I.C.E. table. Since $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\mathrm{c}}$, the reaction shifts to the product, $\mathrm{CO}_{2}(\mathrm{aq})$ side.

Reaction:	$\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons$	$\mathrm{CO}_{2}(\mathrm{aq})$
Initial:	0.0409 mol	$3.29 \times 10^{-3} \mathrm{~mol}$
Stress	+0.01000 mol	-
Changes:	$-x \mathrm{~mol}$	$+x \mathrm{~mol}$
Equilibrium:	$(0.05090-x) \mathrm{mol}$	$3.29 \times 10^{-3}+x \mathrm{~mol}$

$$
K_{\mathrm{C}}=\frac{\left[\mathrm{CO}_{2}(\mathrm{aq})\right]}{\left[\mathrm{CO}_{2}(\mathrm{~g})\right]}=\frac{\frac{3.29 \times 10^{-3}+x \mathrm{~mol}}{0.1000 \mathrm{~L}}}{\frac{(0.05090-x) \mathrm{mol}}{1.000 \mathrm{~L}}}=0.804=\frac{3.29 \times 10^{-2}+10 x}{0.05090-x} \quad x=7.43 \times 10^{-4} \mathrm{~mol} \mathrm{CO}_{2}
$$

Total moles of CO_{2} in the aqueous phase $(0.1000 \mathrm{~L})\left(3.29 \times 10^{-2}+7.43 \times 10^{-3}\right)=4.03 \times 10^{-3}$ moles
Total moles of CO_{2} in the gaseous phase $(1.000 \mathrm{~L})\left(5.090 \times 10^{-2}-7.43 \times 10^{-4}\right)=5.02 \times 10^{-2}$ moles Total moles of $\mathrm{CO}_{2}=5.02 \times 10^{-2}$ moles $+4.03 \times 10^{-3}$ moles $=5.42 \times 10^{-2}$ moles
There is continuous mixing of the ${ }^{12} \mathrm{C}$ and ${ }^{14} \mathrm{C}$ such that the isotopic ratios in the two phases is the same. This ratio is given by the mole fraction of the two isotopes.
For ${ }^{14} \mathrm{CO}_{2}$ in either phase its mole fraction is $\frac{0.01000 \mathrm{~mol}}{5.41 \underline{9} \times 10^{-2} \mathrm{~mol}} \times 100=18.4 \underline{5} \%$
Moles of ${ }^{14} \mathrm{CO}_{2}$ in the gaseous phase $=5.02 \times 10^{-2}$ moles $\times 0.1845=0.00926$ moles
Moles of ${ }^{14} \mathrm{CO}_{2}$ in the aqueous phase $=4.03 \times 10^{-3}$ moles $\times 0.1845=0.000744$ moles
73. (M) Dilution makes Q_{c} larger than K_{c}. Thus, the reaction mixture will shift left in order to regain equilibrium. We organize our calculation around the balanced chemical equation.

Equation:	$\mathrm{Ag}^{+}(\mathrm{aq})$	$+\mathrm{Fe}^{2+}(\mathrm{aq})$	$\rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$	$K_{c}=2.98$
Equil:	0.31 M	0.21 M	$0.19 \mathrm{M}-$	
Dilution:	0.12 M	0.084 M	$0.076 \mathrm{M}-$	
Changes:	$+x \mathrm{M}$	$+x \mathrm{M}$	$-x \mathrm{M}-$	

New equil: $(0.12+x) \mathrm{M}(0.084+x) \mathrm{M}(0.076-x) \mathrm{M}-$
$K_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Fe}^{2+}\right]}=2.98=\frac{0.076-x}{(0.12+x)(0.084+x)} \quad 2.98(0.12+x)(0.084+x)=0.076-x$
$0.076-x=0.030+0.61 x+2.98 x^{2} \quad 2.98 x^{2}+1.61 \quad x-0.046=0$
$x=\frac{-1.61 \pm \sqrt{2.59+0.55}}{5.96}=0.027,-0.57 \quad$ Note that the negative root makes no physical
sense; it gives $\left[\mathrm{Fe}^{2+}\right]=0.084-0.57=-0.49 \mathrm{M}$.
Thus, the new equilibrium concentrations are
$\left[\mathrm{Fe}^{2+}\right]=0.084+0.027=0.111 \mathrm{M} \quad\left[\mathrm{Ag}^{+}\right]=0.12+0.027=0.15 \mathrm{M}$
$\left[\mathrm{Fe}^{3+}\right]=0.076-0.027=0.049 \mathrm{M}$ We can check our answer by substitution.
$K c=\frac{0.049 \mathrm{M}}{0.111 \mathrm{M} \times 0.15 \mathrm{M}}=2.94 \approx 2.98$ (within precision limits)
74. (M) The percent dissociation should increase as the pressure is lowered, according to Le Châtelier's principle. Thus the total pressure in this instance should be more than in Example 15-12, where the percent dissociation is 12.5%. The total pressure in Example 15-12 was computed starting from the total number of moles at equilibrium.
The total amount $=(0.0240-0.00300)$ moles $\mathrm{N}_{2} \mathrm{O}_{4}+2 \times 0.00300 \mathrm{~mol} \mathrm{NO}_{2}=0.027 \mathrm{~mol}$ gas.

$$
\mathrm{P}_{\text {total }}=\frac{\mathrm{nRT}}{\mathrm{~V}}=\frac{0.0270 \mathrm{~mol} \times 0.08206 \mathrm{Latm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}}{0.372 \mathrm{~L}}=1.77 \mathrm{~atm}(\text { Example 15-12 })
$$

We base our solution on the balanced chemical equation. We designate the initial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ as P . The change in $\mathrm{P}\left\{\mathrm{N}_{2} \mathrm{O}_{4}\right\}$ is given as -0.10 P atm. to represent the 10.0% dissociation.

Equation:	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{NO}_{2}(\mathrm{~g})$
Initial:	P atm	0 atm	
Changes:	-0.10 P atm		$+2(0.10 \mathrm{Patm})$
Equil:	0.90 P atm		0.20 Patm

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}\left\{\mathrm{NO}_{2}\right\}^{2}}{\mathrm{P}\left\{\mathrm{~N}_{2} \mathrm{O}_{4}\right\}}=\frac{(0.20 \mathrm{P})^{2}}{0.90 \mathrm{P}}=\frac{0.040 \mathrm{P}}{0.90}=0.113 \quad \mathrm{P}=\frac{0.113 \times 0.90}{0.040}=2.54 \mathrm{~atm} .
$$

Thus, the total pressure at equilibrium is $0.90 \mathrm{P}+0.20 \mathrm{P}$ and 1.10 P (where $\mathrm{P}=2.54 \mathrm{~atm}$) Therefore, total pressure at equilibrium $=2.79 \mathrm{~atm}$.
75. (M) Equation: $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$

Initial:	1.00 atm	0 atm	0 atm
Changes:	$-2 x \mathrm{~atm}$	$+2 x \mathrm{~atm}$	$+x \mathrm{~atm}$
Equil:	$(1.00-2 x) \mathrm{atm}$	$2 x \mathrm{~atm}$	$x \mathrm{~atm}$

Because of the small value of the equilibrium constant, the reaction does not proceed very far toward products in reaching equilibrium. Hence, we assume that $x \ll 1.00 \mathrm{~atm}$ and calculate an approximate value of x (small K problem).

$$
K_{P}=\frac{P\left\{\mathrm{SO}_{2}\right\}^{2} P\left\{\mathrm{O}_{2}\right\}}{P\left\{\mathrm{SO}_{3}\right\}^{2}}=\frac{(2 x)^{2} x}{(1.00-2 x)^{2}}=1.6 \times 10^{-5} \approx \frac{4 x^{3}}{(1.00)^{2}} \quad x=0.016 \mathrm{~atm}
$$

A second cycle may get closer to the true value of x.

$$
1.6 \times 10^{-5} \approx \frac{4 x^{3}}{(1.00-0.032)^{2}}=x=0.016 \mathrm{~atm}
$$

Our initial value was sufficiently close. We now compute the total pressure at equilibrium.

$$
P_{\text {total }}=P\left\{\mathrm{SO}_{3}\right\}+P\left\{\mathrm{SO}_{2}\right\}+P\left\{\mathrm{O}_{2}\right\}=(1.00-2 x)+2 x+x=1.00+x=1.00+0.016=1.02 \mathrm{~atm}
$$

76. (M) Let us start with one mole of air, and let $2 x$ be the amount in moles of NO formed.

Equation:	$\mathrm{N}_{2}(\mathrm{~g}) \quad+$	$\mathrm{O}_{2}(\mathrm{~g})$	$2 \mathrm{NO}(\mathrm{g})$
Initial:	0.79 mol	0.21 mol	0 mol
Changes:	$-x \mathrm{~mol}$	$-x \mathrm{~mol}$	$+2 x \mathrm{~mol}$
Equil:	(0.79-x)mol	(0.21-x)mo	$2 x \mathrm{~mol}$

$$
\begin{aligned}
& \chi_{\mathrm{NO}}=\frac{n\{\mathrm{NO}\}}{n\left\{\mathrm{~N}_{2}\right\}+n\left\{\mathrm{O}_{2}\right\}+n\{\mathrm{NO}\}}=\frac{2 x}{(0.79-x)+(0.21-x)+2 x}=0.018=\frac{2 x}{1.00} \\
& x=0.0090 \mathrm{~mol} \quad 0.79-x=0.78 \mathrm{~mol} \mathrm{~N}_{2} \quad 0.21-x=0.20 \mathrm{~mol} \mathrm{O}_{2} \\
& 2 x=0.018 \mathrm{~mol} \mathrm{NO}
\end{aligned}
$$

$$
K_{\mathrm{p}}=\frac{P\{\mathrm{NO}\}^{2}}{P\left(\mathrm{~N}_{2}\right\} P\left\{\mathrm{O}_{2}\right\}}=\frac{\left(\frac{n\{\mathrm{NO}\} R T}{V_{\text {total }}}\right)^{2}}{\frac{n\left\{\mathrm{~N}_{2}\right) R T}{V_{\text {total }}} \frac{n\left\{\mathrm{O}_{2}\right\} R T}{V_{\text {total }}}}=\frac{n\{\mathrm{NO}\}^{2}}{n\left\{\mathrm{~N}_{2}\right\} n\left\{\mathrm{O}_{2}\right\}}=\frac{(0.018)^{2}}{0.78 \times 0.20}=2.1 \times 10^{-3}
$$

77. (D) We organize the data around the balanced chemical equation. Note that the reaction is stoichimoetrically balanced.
(a) Equation: $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\quad \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Equil :	0.32 mol	0.16 mol	0.68 mol
Add SO_{3}	0.32 mol	0.16 mol	1.68 mol
Initial :	$\frac{0.32 \mathrm{~mol}}{10.0 \mathrm{~L}}$	$\frac{0.16 \mathrm{~mol}}{10.0 \mathrm{~L}}$	$\frac{1.68 \mathrm{~mol}}{10.0 \mathrm{~L}}$
Initial :	0.032 M	0.016 M	0.168 M
To right :	0.000 M	0.000 M	0.200 M
Changes :	$+2 x \mathrm{M}$	$+x \mathrm{M}$	$-2 x \mathrm{M}$
Equil :	$2 x \mathrm{M}$	$x \mathrm{M}$	$(0.200-2 x) \mathrm{M}$

In setting up this problem, we note that solving this question exactly involves finding the roots for a cubic equation. Thus, we assumed that all of the reactants have been converted to products. This gives the results in the line labeled "To right." We then reach equilibrium from this position by converting some of the product back into reactants. Now, we substitute these expressions into the equilibrium constant expression, and we solve this expression approximately by assuming that $2 x \ll 0.200$.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{(0.200-2 x)^{2}}{(2 x)^{2} x}=2.8 \times 10^{2} \approx \frac{(0.200)^{2}}{4 x^{3}} \text { or } x=0.033
$$

We then substitute this approximate value into the expression for K_{c}.

$$
K_{c}=\frac{(0.200-0.066)^{2}}{4 x^{3}}=2.8 \times 10^{2} \text { or } x=0.025
$$

Let us try one more cycle. $K_{\mathrm{c}}=\frac{(0.200-0.050)^{2}}{4 x^{3}}=2.8 \times 10^{2}$ or $x=0.027$

This gives the following concentrations and amounts of each species.

$$
\begin{array}{ll}
{\left[\mathrm{SO}_{3}\right]=0.200-(2 \times 0.027)=0.146 \mathrm{M}} & \text { amount } \mathrm{SO}_{3}=10.0 \mathrm{~L} \times 0.146 \mathrm{M}=1.46 \mathrm{~mol} \mathrm{SO}_{3} \\
{\left[\mathrm{SO}_{2}\right]=2 \times 0.027=0.054 \mathrm{M}} & \text { amount } \mathrm{SO}_{2}=10.0 \mathrm{~L} \times 0.054 \mathrm{M}=0.54 \mathrm{~mol} \mathrm{SO}_{2} \\
{\left[\mathrm{O}_{2}\right]=0.027 \mathrm{M}} & \text { amount } \mathrm{O}_{2}=10.0 \mathrm{~L} \times 0.027 \mathrm{M}=0.27 \mathrm{~mol} \mathrm{O}_{2}
\end{array}
$$

(b) | Equation: | $2 \underset{2}{ } \mathrm{SO}_{2}(\mathrm{~g})$ | + | $\mathrm{O}_{2}(\mathrm{~g})$ | $\rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$ |
| :---: | :---: | :---: | :---: | :---: |
| Equil : | 0.32 mol | 0.16 mol | 0.68 mol | |
| Equil : | $\frac{0.32 \mathrm{~mol}}{10.0 \mathrm{~L}}$ | | $\frac{0.16 \mathrm{~mol}}{10.0 \mathrm{~L}}$ | $\frac{0.68 \mathrm{~mol}}{10.0 \mathrm{~L}}$ |
| Equil : | 0.032 M | 0.016 M | 0.068 M | |
| $0.10 \mathrm{~V}:$ | 0.32 M | 0.16 M | 0.68 M | |
| To right : | 0.00 M | 0.00 M | 1.00 M | |
| Changes : | $+2 \times \mathrm{M}$ | $+x \mathrm{M}$ | $-2 x \mathrm{M}$ | |
| Equil : | $2 \times \mathrm{M}$ | $x \mathrm{M}$ | $(1.00-2 x) \mathrm{M}$ | |

Again, notice that an exact solution involves finding the roots of a cubic. So we have taken the reaction 100% in the forward direction and then sent it back in the reverse direction to a small extent to reach equilibrium. We now solve the K_{c} expression for x, obtaining first an approximate value by assuming $2 x \ll 1.00$.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{(1.00-2 x)^{2}}{(2 x)^{2} x}=2.8 \times 10^{2} \approx \frac{(1.00)^{2}}{4 x^{3}} \text { or } x=0.096
$$

We then use this approximate value of x to find a second approximation for x.

$$
K_{\mathrm{c}}=\frac{(1.00-0.19)^{2}}{4 x^{3}}=2.8 \times 10^{2} \quad \text { or } \quad x=0.084
$$

Another cycle gives $K_{\mathrm{c}}=\frac{(1.00-0.17)^{2}}{4 x^{3}}=2.8 \times 10^{2}$ or $x=0.085$
Then we compute the equilibrium concentrations and amounts.
$\left[\mathrm{SO}_{3}\right]=1.00-(2 \times 0.085)=0.83 \mathrm{M} \quad$ amount $\mathrm{SO}_{3}=1.00 \mathrm{~L} \times 0.83 \mathrm{M}=0.83 \mathrm{~mol} \mathrm{SO}_{3}$ $\left[\mathrm{SO}_{2}\right]=2 \times 0.085=0.17 \mathrm{M} \quad$ amount $\mathrm{SO}_{2}=1.00 \mathrm{~L} \times 0.17 \mathrm{M}=0.17 \mathrm{~mol} \mathrm{SO}_{2}$ $\left[\mathrm{O}_{2}\right]=0.085 \mathrm{M} \quad$ amount $\mathrm{O}_{2}=1.00 \mathrm{~L} \times 0.085 \mathrm{M}=0.085 \mathrm{~mol} \mathrm{O}_{2}$

78. (M)

$$
\begin{aligned}
& \text { Equation: } \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}(\mathrm{~g}) \rightleftharpoons \\
& \mathrm{n}_{\mathrm{co}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\left(\frac{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})}{760 \mathrm{mmHg} / \mathrm{atm}}\right. \\
& 0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}
\end{aligned}\left(\frac{\left(\frac{48.2+48.5}{2}\right) \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}}{(293 \mathrm{~K})}\right)=1.93 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}
$$

Note that moles of $\mathrm{CO}_{2}=$ moles phenol
$n_{\text {salicylic acid }}=\frac{0.300 \mathrm{~g}}{138 \mathrm{~g} / \mathrm{mol}}=2.17 \times 10^{-3} \mathrm{~mol}$ salicylic acid

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]\left[\mathrm{CO}_{2}(\mathrm{~g})\right]}{\left[\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}\right]}=\frac{\left(\frac{1.93 \mathrm{mmol}}{50.0 \mathrm{~mL}}\right)^{2}}{\frac{(2.17-1.93) \mathrm{mmol}}{50.0 \mathrm{~mL}}}=0.310 \\
& \mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{(2-1)}=(0.310) \times\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}\right) \times(473 \mathrm{~K})=12.0
\end{aligned}
$$

79. (D)
(a) This reaction is exothermic and thus, conversion of synthesis gas to methane is favored at lower temperatures. Since $\Delta n_{\text {gas }}=(1+1)-(1+3)=-2$, high pressure favors the products.
(b) The value of K_{c} is a large number, meaning that almost all of the reactants are converted to products (note that the reaction is stoichiometrically balanced). Thus, after we set up the initial conditions we force the reaction to products and then allow the system to reach equilibrium.

Equation: $3 \mathrm{H}_{2}(\mathrm{~g})$	$+\mathrm{CO}(\mathrm{g})$	\rightleftharpoons	$\mathrm{CH}_{4}(\mathrm{~g})$	+
	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$			
Initial:	$\frac{3.00 \mathrm{~mol}}{15.0 \mathrm{~L}}$	$\frac{1.00 \mathrm{~mol}}{15.0 \mathrm{~L}}$	0 M	0 M
Initial:	0.200 M	0.0667 M	0 M	0 M
To right:	0.000 M	0.000 M	0.0667 M	0.0667 M
Changes:	$+3 x \mathrm{M}$	$+x \mathrm{M}$	$-x \mathrm{M}$	$-x \mathrm{M}$
Equil:	$3 x \mathrm{M}$	$x \mathrm{M}$	$(0.0667-x) \mathrm{M}$	$(0.0667-x) \mathrm{M}$

$K_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{2}\right]^{3}[\mathrm{CO}]}=\frac{(0.0667-x)^{2}}{(3 x)^{3} x}=190 . \quad \sqrt{190} .=\frac{0.0667-x}{\sqrt{27} x^{2}}$
$\sqrt{190 \times 27} x^{2}=0.0667-x=71.6 x^{2} \quad 71.6 x^{2}+x-0.0667=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1.00 \pm \sqrt{1.00+19.1}}{143}=0.0244 \mathrm{M}$
$\left[\mathrm{CH}_{4}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]=0.0667-0.0244=0.0423 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=3 \times 0.0244=0.0732 \mathrm{M}$
$[\mathrm{CO}]=0.0244 \mathrm{M}$
We check our calculation by computing the value of the equilibrium constant.

$$
K_{c}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{2}\right]^{3}[\mathrm{CO}]}=\frac{(0.0423)^{2}}{(0.0732)^{3} 0.0244}=187
$$

Now we compute the amount in moles of each component present at equilibrium, and finally the mole fraction of CH_{4}.
amount $\mathrm{CH}_{4}=$ amount $\mathrm{H}_{2} \mathrm{O}=0.0423 \mathrm{M} \times 15.0 \mathrm{~L}=0.635 \mathrm{~mol}$
amount $\mathrm{H}_{2}=0.0732 \mathrm{M} \times 15.0 \mathrm{~L}=1.10 \mathrm{~mol}$
amount $\mathrm{CO}=0.0244 \mathrm{M} \times 15.0 \mathrm{~L}=0.366 \mathrm{~mol}$
$\chi_{\mathrm{CH}_{4}}=\frac{0.635 \mathrm{~mol}}{0.635 \mathrm{~mol}+0.635 \mathrm{~mol}+1.10 \mathrm{~mol}+0.366 \mathrm{~mol}}=0.232$
80. (M) We base our calculation on 1.00 mole of PCl_{5} being present initially.

Equation:	$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons$	$\mathrm{PCl}_{3}(\mathrm{~g})$	+	$\mathrm{Cl}_{2}(\mathrm{~g})$
Initial:	1.00 mol	0 M	0 M	
Changes:	$-\alpha \mathrm{mol}$	$+\alpha \mathrm{mol}$	$+\alpha \mathrm{mol}$	
Equil:	$(1.00-\alpha) \mathrm{mol}$	$\alpha \mathrm{mol}$	$\alpha \mathrm{mol}$	

$$
n_{\text {total }}=1.00-\alpha+\alpha+\alpha=1.00+\alpha
$$

Equation: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Mol fract. $\frac{1.00-\alpha}{1.00+\alpha} \quad \frac{\alpha}{1.00+\alpha} \quad \frac{\alpha}{1.00+\alpha}$

$$
K_{\mathrm{p}}=\frac{P\left\{\mathrm{Cl}_{2}\right\} P\left\{\mathrm{PCl}_{3}\right\}}{P\left\{\mathrm{PCl}_{5}\right\}}=\frac{\left[\chi\left\{\mathrm{Cl}_{2}\right\} P_{\text {toat }}\right]\left[\chi\left\{\mathrm{PCl}_{3}\right\} P_{\text {total }}\right]}{\left[\chi\left\{\mathrm{PCl}_{5}\right\} P_{\text {total }}\right]}=\frac{\left(\frac{\alpha}{1.00+\alpha} P_{\text {total }}\right)^{2}}{\frac{1.00-\alpha}{1.00+\alpha} \mathrm{P}_{\text {total }}}=\frac{\alpha^{2} P_{\text {total }}}{(1.00+\alpha)(1.00-\alpha)}=\frac{\alpha^{2} P_{\text {total }}}{1-\alpha^{2}}
$$

81. (M) We assume that the entire 5.00 g is $\mathrm{N}_{2} \mathrm{O}_{4}$ and reach equilibrium from this starting point.
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{i}=\frac{5.00 \mathrm{~g}}{0.500 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.01 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}=0.109 \mathrm{M}$
Equation: $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
Initial: $0.109 \quad 0 \mathrm{M}$
Changes: $-x \mathrm{M} \quad+2 x \mathrm{M}$
Equil: $\quad(0.0109-x) \mathrm{M} \quad 2 x \mathrm{M}$
$K_{\mathrm{C}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=4.61 \times 10^{-3}=\frac{(2 x)^{2}}{0.109-x} \quad 4 x^{2}=5.02 \times 10^{-4}-4.61 \times 10^{-3} x$
$4 x^{2}+0.00461 x-0.000502=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0.00461 \pm \sqrt{2.13 \times 10^{-5}+8.03 \times 10^{-3}}}{8}=0.0106 \mathrm{M},-0.0118 \mathrm{M}$
(The method of successive approximations yields 0.0106 after two iterations)
$\begin{aligned} & \text { amount } \mathrm{N}_{2} \mathrm{O}_{4}=0.500 \mathrm{~L}(0.109-0.0106) \mathrm{M}=0.0492 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4} \\ & \text { amount } \mathrm{NO}_{2}=0.500 \mathrm{~L} \times 2 \times 0.0106 \mathrm{M}=0.0106 \mathrm{~mol} \mathrm{NO}_{2} \\ & \text { mol fraction } \mathrm{NO}_{2}=\frac{0.0106 \mathrm{~mol} \mathrm{NO}}{2} \\ & 0.0106 \mathrm{~mol} \mathrm{NO}_{2}+0.0492 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}\end{aligned}=0.177$.
82. (M) We let P be the initial pressure in atmospheres of $\mathrm{COCl}_{2}(\mathrm{~g})$.

Equation: $\mathrm{COCl}_{2}(\mathrm{~g})$	\rightleftharpoons	$\mathrm{CO}(\mathrm{g})$	$+\underset{2}{ } \mathrm{Cl}_{2}(\mathrm{~g})$	
Initial:	P		0 M	0 M
Changes:	$-x$		$+x$	$+x$
Equil:	$\mathrm{P}-x$		x	x

Total pressure $=3.00 \mathrm{~atm}=\mathrm{P}-x+x+x=\mathrm{P}+x \quad \mathrm{P}=3.00-x$
$\mathrm{P}\left\{\mathrm{COCl}_{2}\right\}=\mathrm{P}-x=3.00-x-x=3.00-2 x$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}\{\mathrm{CO}\} \mathrm{P}\left\{\mathrm{Cl}_{2}\right\}}{\mathrm{P}\left(\mathrm{COCl}_{2}\right\}}=0.0444=\frac{x \cdot x}{3.00-2 x} \\
& x^{2}=0.133-0.0888 x \quad x^{2}+0.0888 x-0.133=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-0.0888 \pm \sqrt{0.00789+0.532}}{2}=0.323,-0.421
\end{aligned}
$$

Since a negative pressure is physically meaningless, $x=0.323 \mathrm{~atm}$.
(The method of successive approximations yields $x=0.323$ after four iterations.)
$P\{\mathrm{CO}\}=P\left\{\mathrm{Cl}_{2}\right\}=0.323 \mathrm{~atm}$
$P\left\{\mathrm{COCl}_{2}\right\}=3.00-2 \times 0.323=2.35 \mathrm{~atm}$
The mole fraction of each gas is its partial pressure divided by the total pressure. And the contribution of each gas to the apparent molar mass of the mixture is the mole fraction of that gas multiplied by the molar mass of that gas.

$$
\begin{aligned}
M_{\mathrm{avg}} & =\frac{P\{\mathrm{CO}\}}{P_{\mathrm{tot}}} M\{\mathrm{CO}\}+\frac{P\left\{\mathrm{Cl}_{2}\right\}}{P_{\text {tot }}} M\left\{\mathrm{Cl}_{2}\right\}+\frac{P\left\{\mathrm{COCl}_{2}\right\}}{P_{\mathrm{tot}}} M\left\{\mathrm{COCl}_{2}\right\} \\
& =\left(\frac{0.323 \mathrm{~atm}}{3.00 \mathrm{~atm}} \times 28.01 \mathrm{~g} / \mathrm{mol}\right)+\left(\frac{0.323 \mathrm{~atm}}{3.00 \mathrm{~atm}} \times 70.91 \mathrm{~g} / \mathrm{mol}\right)+\left(\frac{2.32 \mathrm{~atm}}{3.00 \mathrm{~atm}} \times 98.92 \mathrm{~g} / \mathrm{mol}\right) \\
& =87.1 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

83. (M) Each mole fraction equals the partial pressure of the substance divided by the total pressure. Thus $\chi\left\{\mathrm{NH}_{3}\right\}=P\left\{\mathrm{NH}_{3}\right\} / P_{\text {tot }}$ or $P\left\{\mathrm{NH}_{3}\right\}=\chi\left\{\mathrm{NH}_{3}\right\} P_{\text {tot }}$

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{P\left\{\mathrm{NH}_{3}\right\}^{2}}{P\left\{\mathrm{~N}_{2}\right\} P\left\{\mathrm{H}_{2}\right\}^{3}}=\frac{\left(\chi\left\{\mathrm{NH}_{3}\right\} P_{\mathrm{tot}}\right)^{2}}{\left(\chi\left\{\mathrm{~N}_{2}\right\} P_{\text {tot }}\right)\left(\chi\left\{\mathrm{H}_{2}\right\} P_{\text {tot }}\right)^{3}}=\frac{\chi\left\{\mathrm{NH}_{3}\right\}^{2}}{\chi\left\{\mathrm{~N}_{2}\right\} \chi\left\{\mathrm{H}_{2}\right\}^{3}} \frac{\left(P_{\mathrm{tot}}\right)^{2}}{\left(P_{\text {tot }}\right)^{4}} \\
& =\frac{\chi\left\{\mathrm{NH}_{3}\right\}^{2}}{\chi\left\{\mathrm{~N}_{2}\right\} \chi\left\{\mathrm{H}_{2}\right\}^{3}} \frac{1}{\left(P_{\text {tot }}\right)^{2}}
\end{aligned}
$$

This is the expression we were asked to derive.
84. (D) Since the mole ratio of N_{2} to H_{2} is $1: 3, \chi\left\{\mathrm{H}_{2}\right\}=3 \chi\left\{\mathrm{~N}_{2}\right\}$. Since $P_{\text {tot }}=1.00 \mathrm{~atm}$, it follows.

$$
\begin{aligned}
& K_{\mathrm{p}}=\frac{\chi\left\{\mathrm{NH}_{3}\right\}^{2}}{\chi\left\{\mathrm{~N}_{2}\right\}\left(3 \chi\left\{\mathrm{~N}_{2}\right\}\right)^{3}} \frac{1}{(1.00)^{2}}=9.06 \times 10^{-2}=0.0906 \\
& 3^{3} \times 0.0906=\frac{\chi\left\{\mathrm{NH}_{3}\right\}^{2}}{\chi\left\{\mathrm{~N}_{2}\right\} \chi\left\{\mathrm{N}_{2}\right\}^{3}}=\frac{\chi\left\{\mathrm{NH}_{3}\right\}^{2}}{\chi\left\{\mathrm{~N}_{2}\right\}^{4}} \quad \frac{\chi\left\{\mathrm{NH}_{3}\right\}}{\chi\left\{\mathrm{N}_{2}\right\}^{2}}=\sqrt{3^{3} \times 0.0906}=1.56
\end{aligned}
$$

We realize that $\chi\left\{\mathrm{NH}_{3}\right\}+\chi\left\{\mathrm{N}_{2}\right\}+\chi\left\{\mathrm{H}_{2}\right\}=1.00=\chi\left\{\mathrm{NH}_{3}\right\}+\chi\left\{\mathrm{N}_{2}\right\}+3 \chi\left\{\mathrm{~N}_{2}\right\}$
This gives $\chi\left\{\mathrm{NH}_{3}\right\}=1.00-4 \chi\left\{\mathrm{~N}_{2}\right\} \quad$ And we have
$1.56=\frac{1.00-4 \chi\left\{\mathrm{~N}_{2}\right\}}{\chi\left\{\mathrm{N}_{2}\right\}^{2}} \quad$ For ease of solving, we let $x=\chi\left\{\mathrm{N}_{2}\right\}$
$1.56=\frac{1.00-4 x}{x^{2}} \quad 1.56 x^{2}=1.00-4 x \quad 1.56 x^{2}+4 x-1.00=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4.00 \pm \sqrt{16.00+6.24}}{3.12}=0.229,-2.794$
Thus $\chi\left\{\mathrm{N}_{2}\right\}=0.229 \quad$ Mole $\% \mathrm{NH}_{3}=(1.000 \mathrm{~mol}-(4 \times 0.229 \mathrm{~mol})) \times 100 \%=8.4 \%$
85. (M) Since the initial mole ratio is $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ to $1 \mathrm{CH}_{4}(\mathrm{~g})$, the reactants remain in their stoichiometric ratio when equilibrium is reached. Also, the products are formed in their stoichiometric ratio.

$$
\begin{aligned}
\text { amount } \mathrm{CH}_{4} & =9.54 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}=4.77 \times 10^{-3} \mathrm{~mol} \mathrm{CH}_{4} \\
\text { amount } \mathrm{CS}_{2} & =1.42 \times 10^{-3} \mathrm{~mol} \mathrm{BaSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~S}_{1 \mathrm{~mol} \mathrm{BaSO}_{4}}^{1}}{1 \mathrm{~mol} \mathrm{CS}_{2}} \\
\text { mol S} & 1.10 \times 10^{-4} \mathrm{~mol} \mathrm{CS}_{2} \\
\text { amount } \mathrm{H}_{2} & =7.10 \times 10^{-4} \mathrm{~mol} \mathrm{CS}_{2} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{CS}_{2}}=2.84 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \\
\text { total amount } & =9.54 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}+4.77 \times 10^{-3} \mathrm{~mol} \mathrm{CH}_{4}+7.10 \times 10^{-4} \mathrm{~mol} \mathrm{CS}_{2}+2.84 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \\
& =17.86 \times 10^{-3} \mathrm{~mol}^{2}
\end{aligned}
$$

The partial pressure of each gas equals its mole fraction times the total pressure.

$$
\begin{aligned}
& P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}=1.00 \mathrm{~atm} \times \frac{9.54 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{17.86 \times 10^{-3} \mathrm{~mol} \mathrm{tatal}=0.534 \mathrm{~atm}} \\
& P\left\{\mathrm{CH}_{4}\right\}=1.00 \mathrm{~atm} \times \frac{4.77 \times 10^{-3} \mathrm{~mol} \mathrm{CH}_{4}}{17.86 \times 10^{-3} \mathrm{~mol} \mathrm{total}^{2}}=0.267 \mathrm{~atm} \\
& P\left\{\mathrm{CS}_{2}\right\}=1.00 \mathrm{~atm} \times \frac{7.10 \times 10^{-4} \mathrm{~mol} \mathrm{CS}_{2}}{17.86 \times 10^{-3} \mathrm{~mol} \mathrm{total}}=0.0398 \mathrm{~atm} \\
& P\left\{\mathrm{H}_{2}\right\}=1.00 \mathrm{~atm} \times \frac{2.84 \times 10^{-3} \mathrm{~mol} \mathrm{H}}{17.86 \times 10^{-3} \mathrm{~mol} \mathrm{tatal}}=0.159 \mathrm{~atm} \\
& K_{\mathrm{p}}=\frac{P\left\{\mathrm{H}_{2}\right\}^{4} P\left\{\mathrm{CS}_{2}\right\}}{P\left\{\mathrm{H}_{2} \mathrm{~S}\right\}^{2} P\left\{\mathrm{CH}_{4}\right\}}=\frac{0.159^{4} \times 0.0398}{0.534^{2} \times 0.267}=3.34 \times 10^{-4}
\end{aligned}
$$

86. (D) We base our calculation on an I.C.E. table, after we first determine the direction of the reaction by computing :
$Q_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{2+}\right]^{2}\left[\mathrm{Hg}^{2+}\right]^{2}}{\left[\mathrm{Fe}^{3+}\right]^{2}\left[\mathrm{Hg}_{2}{ }^{2+}\right]}=\frac{(0.03000)^{2}(0.03000)^{2}}{(0.5000)^{2}(0.5000)}=6.48 \times 10^{-6}$
Because this value is smaller than K_{c}, the reaction will shift to the right to reach equilibrium. Since the value of the equilibrium constant for the forward reaction is quite small, let us assume that the reaction initially shifts all the way to the left (line labeled "to left:"), and then reacts back in the forward direction to reach a position of equilibrium.

| Equation: $2 \mathrm{Fe}^{3+}(\mathrm{aq})$ | + | $\mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})$ | \rightleftharpoons | $2 \mathrm{Fe}^{2+}(\mathrm{aq})$ |
| :--- | :---: | :---: | :---: | :---: |$+2 \mathrm{Hg}^{2+}(\mathrm{aq})$

Note that we have assumed that $2 x \ll 0.5300$ and $x<0.5150$

$$
x^{4}=\frac{9.14 \times 10^{-6}(0.5300)^{2}(0.5150)}{4 \times 4}=8.26 \times 10^{-8} \quad x=0.0170
$$

Our assumption, that $2 x(=0.0340) \ll 0.5300$, is reasonably good.
$\left[\mathrm{Fe}^{3+}\right]=0.5300-2 \times 0.0170=0.4960 \mathrm{M} \quad\left[\mathrm{Hg}_{2}{ }^{2+}\right]=0.5150-0.0170=0.4980$
$\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Hg}^{2+}\right]=2 \times 0.0170=0.0340 \mathrm{M}$

We check by substituting into the K_{c} expression.

$$
9.14 \times 10^{-6}=\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{2+}\right]^{2}\left[\mathrm{Hg}^{2+}\right]^{2}}{\left[\mathrm{Fe}^{3+}\right]^{2}\left[\mathrm{Hg}_{2}^{2+}\right]}=\frac{(0.0340)^{2}(0.0340)^{2}}{(0.4960)^{2} 0.4980}=11 \times 10^{-6} \quad \text { Not a substantial difference. }
$$

Mathematica (version 4.0, Wolfram Research, Champaign, IL) gives a root of 0.0163 .
87. (D) Again we base our calculation on an I.C.E. table. In the course of solving the Integrative Example, we found that we could obtain the desired equation by reversing equation (2) and adding the result to equation (1)

-(2)	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	+	$\mathrm{CH}_{4}(\mathrm{~g})$		$\mathrm{CO}(\mathrm{g})$	+	$3 \mathrm{H}_{2}(\mathrm{~g})$	$K=1 / 190$
+(1)	$\mathrm{CO}(\mathrm{g})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$		$\mathrm{CO}_{2}(\mathrm{~g})$		$\mathrm{H}_{2}(\mathrm{~g})$	$K=1.4$

Equation: $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}=1.4 / 190=0.0074$
$-(2) \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad+\mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g}) \quad+3 \mathrm{H}_{2}(\mathrm{~g}) \quad K=1 / 190$
$+(1) \quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad K=1.4$
Equation: $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad K=1.4 / 190=0.0074$
Initial: $\quad 0.100 \mathrm{~mol} \quad 0.100 \mathrm{~mol} \quad 0.100 \mathrm{~mol} \quad 0.100 \mathrm{~mol}$

\longleftarrow	+0.025 mol	+0.050 mol	-0.025 mol	-0.100 mol
To left:	0.125 mol	0.150 mol	0.075 mol	0.000 mol
Concns:	0.0250 M	0.0300 M	0.015 M	0.000 M
Changes:	$-x \mathrm{M}$	$-2 x \mathrm{~mol}$	$+x \mathrm{~mol}$	$+4 x \mathrm{~mol}$

Equil: $\quad(0.0250-x) \mathrm{M}(0.0300-2 x) \quad(0.015+x) \mathrm{M} \quad 4 x \mathrm{~mol}$
Notice that we have a fifth order polynomial to solve. Hence, we need to try to approximate its final solution as closely as possible. The reaction favors the reactants because of the small size of the equilibrium constant. Thus, we approach equilibrium from as far to the left as possible.

$$
\begin{aligned}
& K_{\mathrm{c}}=0.0074=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}=\frac{(0.0150+x)(4 x)^{4}}{(0.0250-x)(0.0300-2 x)^{2}} \approx \frac{0.0150(4 x)^{4}}{0.0250(0.0300)^{2}} \\
& x \approx \sqrt[4]{\frac{0.0250(0.0300)^{2} 0.0074}{0.0150 \times 256}}=0.014 \mathrm{M}
\end{aligned}
$$

Our assumption is terrible. We substitute to continue successive approximations.

$$
0.0074=\frac{(0.0150+0.014)(4 x)^{4}}{(0.0250-0.014)(0.0300-2 \times 0.014)^{2}}=\frac{(0.029)(4 x)^{4}}{(0.011)(0.002)^{2}}
$$

Next, try $x_{2}=0.0026$

$$
0.074=\frac{(0.0150+0.0026)(4 x)^{4}}{(0.0250-0.0026)(0.0300-2 \times 0.0026)^{2}}
$$

then, $\operatorname{try} x_{3}=0.0123$.
After 18 iterations, the x value converges to 0.0080 .
Considering that the equilibrium constant is known to only two significant figures, this is a pretty good result. Recall that the total volume is 5.00 L . We calculate amounts in moles.

$\mathrm{CH}_{4}(\mathrm{~g})$	$(0.0250-0.0080) \times 5.00 \mathrm{~L}=0.017 \mathrm{M} \times 5.00 \mathrm{~L}=0.085{\text { moles } \mathrm{CH}_{4}(\mathrm{~g})}^{\mathrm{H}_{2} \mathrm{O}(\mathrm{g})}$
$\mathrm{CO}_{2}(\mathrm{~g})$	$(0.0300-2 \times 0.0080) \mathrm{M} \times 5.00 \mathrm{~L}=0.014 \mathrm{M} \times 5.00 \mathrm{~L}=0.070$ moles $_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{H}_{2}(\mathrm{~g})$	$(0.015+0.0080) \mathrm{M} \times 5.00 \mathrm{~L}=0.023 \mathrm{M} \times 5.00 \mathrm{~L}=0.12 \mathrm{~mol} \mathrm{CO}_{2}$
	$(4 \times 0.0080) \mathrm{M} \times 5.00 \mathrm{~L}=0.032 \mathrm{M} \times 5.00 \mathrm{~L}=0.16 \mathrm{~mol} \mathrm{H}_{2}$

88. (M) The initial mole fraction of $\mathrm{C}_{2} \mathrm{H}_{2}$ is $\chi_{\mathrm{i}}=0.88$. We use molar amounts at equilibrium to compute the equilibrium mole fraction of $\mathrm{C}_{2} \mathrm{H}_{2}, \chi_{\mathrm{eq}}$. Because we have a 2.00 -L container, molar amounts are double the molar concentrations.

$$
\chi_{\mathrm{eq}}=\frac{(2 \times 0.756) \mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{2}}{(2 \times 0.756) \mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{2}+(2 \times 0.038) \mathrm{mol} \mathrm{CH}_{4}+(2 \times 0.068) \mathrm{mol} \mathrm{H}_{2}}=0.87 \underline{7}
$$

Thus, there has been only a slight decrease in mole fraction.
89. (M)
(a) $\mathrm{K}_{\mathrm{eq}}=4.6 \times 10^{4} \frac{\mathrm{P}\{\mathrm{NOCl}\}^{2}}{\mathrm{P}\left\{\mathrm{NO}^{2} \mathrm{P}\left\{\mathrm{Cl}_{2}\right\}\right.}=\frac{(4.125)^{2}}{\mathrm{P}\{\mathrm{NO}\}^{2}(0.1125)}$

$$
\mathrm{P}\{\mathrm{NO}\}=\sqrt{\frac{(4.125)^{2}}{4.6 \times 10^{4}(0.1125)}}=0.057 \underline{3} \mathrm{~atm}
$$

(b) $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{NO}}+\mathrm{P}_{\mathrm{Cl}_{2}}+\mathrm{P}_{\mathrm{NOCl}}=0.057 \underline{3} \mathrm{~atm}+0.1125 \mathrm{~atm}+4.125 \mathrm{~atm}=4.295 \mathrm{~atm}$
90. (M) We base our calculation on an I.C.E. table.

Reaction:	$\mathrm{N}_{2}(\mathrm{~g})$	+	$3 \mathrm{H}_{2}(\mathrm{~g})$	\rightleftharpoons
Initial:	$\frac{0.424 \mathrm{~mol}}{10.0 \mathrm{~L}}$		$\frac{1.272 \mathrm{~mol}}{10.0 \mathrm{~L}}$	
Change	$\frac{-x \mathrm{~mol}}{10.0 \mathrm{~L}}$		$\frac{0 \mathrm{~mol}}{10.0 \mathrm{~L}}$	
Equilibrium	$\frac{(0.424-x) \mathrm{mol}}{10.0 \mathrm{~L}}$		$\frac{-3 x \mathrm{~mol}}{10.0 \mathrm{~L}}$	

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=152=\frac{\left(\frac{2 x \mathrm{~mol}}{10.0 \mathrm{~L}}\right)^{2}}{\left(\frac{(0.424-x) \mathrm{mol}}{10.0 \mathrm{~L}}\right)\left(\frac{(1.272-3 x) \mathrm{mol}}{10.0 \mathrm{~L}}\right)^{3}} \\
& \mathrm{~K}_{\mathrm{c}}=\frac{100(2 x \mathrm{~mol})^{2}}{((0.424-x) \mathrm{mol})(3(0.424-x) \mathrm{mol}))^{3}} \\
& \mathrm{~K}_{\mathrm{c}}=\frac{100(2 x \mathrm{~mol})^{2}}{\left.3^{3}(0.424-x) \mathrm{mol}\right)^{4}}=152 \quad \frac{(2 x \mathrm{~mol})^{2}}{(0.424-x) \mathrm{mol})^{4}}=41.04 \quad \text { Take root of both sides } \\
& \frac{(2 x \mathrm{~mol})}{(0.424-x) \mathrm{mol})^{2}}=6.41 \\
& 3.20\left(0.180-0.848 x+x^{2}\right)=x=3.20 x^{2}-2.71 x+0.576
\end{aligned}
$$

Now solve using the quadratic equation: $x=0.184 \underline{6} \mathrm{~mol}$ or $0.975 \underline{6} \mathrm{~mol}$ (too large) amount of $\mathrm{NH}_{3}=2 x=2(0.1846 \mathrm{~mol})=0.369 \mathrm{~mol}$ in 10.0 L or 0.0369 M $\left(\left[\mathrm{H}_{2}\right]=0.0718 \mathrm{M}\right.$ and $\left.\left[\mathrm{N}_{2}\right]=0.0239 \mathrm{M}\right)$

91. (D)

Equation: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \mathrm{K}_{\mathrm{c}}=14.5$ at 483 K

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}=14.5\left(0.08206 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}} \times 483 \mathrm{~K}\right)^{-2}=9.23 \times 10^{-3}
$$

We know that mole percents equal pressure percents for ideal gases.

$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CH}_{3} \mathrm{OH}}}{\mathrm{P}_{\mathrm{CO}} \times \mathrm{P}_{\mathrm{H}_{2}{ }^{2}}}=\frac{\mathrm{P}}{(35.0-\mathrm{P})(65.0-2 \mathrm{P})^{2}}=9.23 \times 10^{-3}$
By successive approximations, $\mathrm{P}=24.6 \mathrm{~atm}=\mathrm{P}_{\mathrm{CH}_{3} \mathrm{OH}}$ at equilibrium.
Mathematica (version 4.0, Wolfram Research, Champaign, IL) gives a root of 24.5 .

FEATURE PROBLEMS

92. (M) We first determine the amount in moles of acetic acid in the equilibrium mixture. amount $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=28.85 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.1000 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}$ $\times \frac{\text { complete equilibrium mixture }}{0.01 \text { of equilibrium mixture }}=0.5770 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}=\frac{\frac{0.423 \mathrm{~mol}}{V} \times \frac{0.423 \mathrm{~mol}}{V}}{\frac{0.077 \mathrm{~mol}}{V} \times \frac{0.577 \mathrm{~mol}}{V}}=\frac{0.423 \times 0.423}{0.077 \times 0.577}=4.0
$$

93. (D) In order to determine whether or not equilibrium has been established in each bulb, we need to calculate the concentrations for all three species at the time of opening. The results from these calculations are tabulated below and a typical calculation is given beneath this table.

Bulb							
No.	Time Bulb Opened (hours)	Initial Amount $\mathrm{HI}(\mathrm{g})$ (in mmol)	Amount of $\mathrm{I}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ at Time of Opening (in mmol)	Amount HI(g) at Time of Opening (in mmol)	$[\mathrm{HI}]$ (mM)	$\left[\mathrm{I}_{2}\right] \&$ $\left[\mathrm{H}_{2}\right]$ (mM)	$\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$
1	2	$2.34 \underline{5}$	0.1572	2.03	5.08	0.393	0.00599
2	4	$2.51 \underline{8}$	0.2093	2.10	5.25	0.523	0.00992
3	12	$2.46 \underline{3}$	0.2423	1.98	4.95	0.606	0.0150
4	20	$3.17 \underline{4}$	0.3113	2.55	6.38	0.778	0.0149
5	40	$2.18 \underline{9}$	0.2151	1.76	4.40	0.538	0.0150

Consider, for instance, bulb \#4 (opened after 20 hours).
Initial moles of $\mathrm{HI}(\mathrm{g})=0.406 \mathrm{~g} \mathrm{HI}(\mathrm{g}) \times \frac{1 \mathrm{~mole} \mathrm{HI}}{127.9 \mathrm{~g} \mathrm{HI}}=0.00317 \underline{4} \mathrm{~mol} \mathrm{HI}(\mathrm{g})$ or $3.17 \underline{\mathrm{mmol}}$ moles of $\mathrm{I}_{2}(\mathrm{~g})$ present in bulb when opened.
$=0.04150 \mathrm{~L} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \times \frac{0.0150 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}{1 \mathrm{~L} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{I}_{2}}{2 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}=3.113 \times 10^{-4} \mathrm{~mol} \mathrm{I}_{2}$
millimoles of $\mathrm{I}_{2}(\mathrm{~g})$ present in bulb when opened $=3.113 \times 10^{-4} \mathrm{~mol} \mathrm{I}_{2}$ moles of H_{2} present in bulb when opened $=$ moles of $\mathrm{I}_{2}(\mathrm{~g})$ present in bulb when opened.

HI reacted $=3.113 \times 10^{-4} \mathrm{~mol} \mathrm{I}_{2} \times \frac{2 \text { mole HI }}{1 \mathrm{~mol} \mathrm{I}_{2}}=6.226 \times 10^{-4} \mathrm{~mol} \mathrm{HI}(0.6226 \mathrm{mmol} \mathrm{HI})$ moles of $\mathrm{HI}(\mathrm{g})$ in bulb when opened $=3.17 \underline{4} \mathrm{mmol} \mathrm{HI}-0.6226 \mathrm{mmol} \mathrm{HI}=2.55 \mathrm{mmol} \mathrm{HI}$ Concentrations of $\mathrm{HI}, \mathrm{I}_{2}$, and H_{2}
$[\mathrm{HI}]=2.55 \mathrm{mmol} \mathrm{HI} \div 0.400 \mathrm{~L}=6.38 \mathrm{mM}$
$\left[\mathrm{I}_{2}\right]=\left[\mathrm{H}_{2}\right]=0.3113 \mathrm{mmol} \div 0.400 \mathrm{~L}=0.778 \mathrm{mM}$
Ratio: $\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\frac{(0.778 \mathrm{mM})(0.778 \mathrm{mM})}{(6.38 \mathrm{mM})^{2}}=0.0149$

As the time increases, the ratio $\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$ initially climbs sharply, but then plateaus at
0.0150 somewhere between 4 and 12 hours. Consequently, it seems quite reasonable to conclude that the reaction $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ has a $\mathrm{K}_{\mathrm{c}} \sim 0.015$ at 623 K .
94. (D) We first need to determine the number of moles of ammonia that were present in the sample of gas that left the reactor. This will be accomplished by using the data from the titrations involving $\mathrm{HCl}(\mathrm{aq})$.

Original number of moles of $\mathrm{HCl}(\mathrm{aq})$ in the 20.00 mL sample
$=0.01872 \mathrm{~L}$ of $\mathrm{KOH} \times \frac{0.0523 \mathrm{~mol} \mathrm{KOH}}{1 \mathrm{~L} \mathrm{KOH}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{KOH}}$
$=9.79 \underline{06} \times 10^{-4}$ moles of $\mathrm{HCl}_{\text {(initially) }}$

Moles of unreacted $\mathrm{HCl}(\mathrm{aq})$
$=0.01542 \mathrm{~L}$ of $\mathrm{KOH} \times \frac{0.0523 \mathrm{~mol} \mathrm{KOH}}{1 \mathrm{~L} \mathrm{KOH}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{KOH}}=$
$8.06 \underline{47} \times 10^{-4}$ moles of $\mathrm{HCl}_{\text {(unreacted) }}$
Moles of HCl that reacted and /or moles of NH_{3} present in the sample of reactor gas $=9.79 \underline{06} \times 10^{-4}$ moles $-8.06 \underline{47} \times 10^{-4}$ moles $=1.73 \times 10^{-4} \mathrm{~mole}^{\text {of }} \mathrm{NH}_{3}($ or HCl$)$.

The remaining gas, which is a mixture of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ gases, was found to occupy 1.82 L at 273.2 K and 1.00 atm . Thus, the total number of moles of N_{2} and H_{2} can be found via the
ideal gas law: $n_{H_{2}+N_{2}}=\frac{P V}{R T}=\frac{(1.00 \mathrm{~atm})(1.82 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}\right)(273.2 \mathrm{~K})}=0.0811 \underline{8}$ moles of $\left(\mathrm{N}_{2}+\mathrm{H}_{2}\right)$
According to the stoichiometry for the reaction, 2 parts NH_{3} decompose to give 3 parts H_{2} and 1 part N_{2}. Thus the non-reacting mixture must be $75 \% \mathrm{H}_{2}$ and $25 \% \mathrm{~N}_{2}$.

So, the number of moles of $\mathrm{N}_{2}=0.25 \times 0.0811 \underline{8}$ moles $=0.0203$ moles N_{2} and the number of moles of $\mathrm{H}_{2}=0.75 \times 0.0811 \underline{8}$ moles $=0.0609$ moles H_{2}.

Before we can calculate K_{c}, we need to determine the volume that the $\mathrm{NH}_{3}, \mathrm{~N}_{2}$, and H_{2} molecules occupied in the reactor. Once again, the ideal gas law $(P V=n R T)$ will be employed. $n_{\text {gas }}=0.0811 \underline{8}$ moles $\left(\mathrm{N}_{2}+\mathrm{H}_{2}\right)+1.73 \times 10^{-4}$ moles $\mathrm{NH}_{3}=0.0813 \underline{5}$ moles
$V_{\text {gases }}=\frac{n R T}{P}=\frac{(0.08135 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}\right)(1174.2 \mathrm{~K})}{30.0 \mathrm{~atm}}=0.261 \underline{3} \mathrm{~L}$
So, $K_{\mathrm{c}}=\frac{\left[\frac{1.73 \times 10^{-4} \mathrm{moles}}{0.2613 \mathrm{~L}}\right]^{2}}{\left[\frac{0.0609 \mathrm{moles}}{0.2613 \mathrm{~L}}\right]^{3}\left[\frac{0.0203 \mathrm{moles}}{0.2613 \mathrm{~L}}\right]^{1}}=4.46 \times 10^{-4}$
To calculate K_{p} at $901{ }^{\circ} \mathrm{C}$, we need to employ the equation $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta \mathrm{n}_{\mathrm{gas}}} ; \Delta n_{\mathrm{gas}}=-2$
$\left.K_{\mathrm{p}}=4.46 \times 10^{-4}\left[\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\right] \times(1174.2 \mathrm{~K})\right]^{-2}=4.80 \times 10^{-8}$ at $901^{\circ} \mathrm{C}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
95. (M) For step 1, rate of the forward reaction = rate of the reverse reaction, so,

$$
k_{1}\left[\mathrm{I}_{2}\right]=k_{-1}[\mathrm{I}]^{2} \text { or } \frac{k_{1}}{k_{-1}}=\frac{[\mathrm{I}]^{2}}{\left[\mathrm{I}_{2}\right]}=K_{\mathrm{c}}(\text { step } 1)
$$

Like the first step, the rates for the forward and reverse reactions are equal in the second step and thus,

$$
k_{2}[\mathrm{I}]^{2}\left[\mathrm{H}_{2}\right]=k_{-2}[\mathrm{HI}]^{2} \text { or } \frac{k_{2}}{k_{-2}}=\frac{[\mathrm{HI}]^{2}}{[I]^{2}\left[\mathrm{H}_{2}\right]}=K_{\mathrm{c}}(\text { step } 2)
$$

Now we combine the two elementary steps to obtain the overall equation and its associated equilibrium constant.

$$
\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{~g}) \quad K_{\mathrm{c}}=\frac{k_{1}}{k_{-1}}=\frac{[\mathrm{I}]^{2}}{\left[\mathrm{I}_{2}\right]}(\text { STEP } 1)
$$

and
$\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{I}(\mathrm{g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) \quad K_{\mathrm{c}}=\frac{k_{2}}{k_{-2}}=\frac{[\mathrm{HI}]^{2}}{[I]^{2}\left[\mathrm{H}_{2}\right]}$ (STEP 2)

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \\
K_{\mathrm{c}(\text { overall })}=K_{\mathrm{c}(\text { step } 1)} \times K_{\mathrm{c}(\text { step } 2)} \\
K_{\mathrm{c}(\text { overall })}=\frac{k_{1}}{k_{-1}} \times \frac{\mathrm{k}_{2}}{\mathrm{k}_{-2}}=\frac{[\mathrm{I}]^{2}}{\left[\mathrm{I}_{2}\right]} \times \frac{[\mathrm{HI}]^{2}}{[\mathrm{I}]^{2}\left[\mathrm{H}_{2}\right]} \\
K_{\mathrm{c}(\text { overall })}=\frac{k_{1} k_{2}}{k_{-1} k_{-2}}=\frac{[\mathrm{I}]^{2}[\mathrm{HI}]^{2}}{[\mathrm{I}]^{2}\left[\mathrm{I}_{2}\right]\left[\mathrm{H}_{2}\right]}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{I}_{2}\right]\left[\mathrm{H}_{2}\right]}
\end{array}
\end{aligned}
$$

96. (M) The equilibrium expressions for the two reactions are:

$$
\mathrm{K}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} ; \mathrm{K}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}
$$

First, start with $\left[\mathrm{H}^{+}\right]=0.1$ and $\left[\mathrm{HCO}_{3}{ }^{-}\right]=1$. This means that $\left[\mathrm{H}^{+}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]=0.1$, which means that $\left[\mathrm{CO}_{3}{ }^{2-}\right]=10 \mathrm{~K}_{2}$. By adding a small amount of $\mathrm{H}_{2} \mathrm{CO}_{3}$ we shift $\left[\mathrm{H}^{+}\right]$by 0.1 and $\left[\mathrm{HCO}_{3}{ }^{-}\right]$by 0.1 . This leads to $\left[\mathrm{H}^{+}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right] \approx 0.2$, which means that $\left[\mathrm{CO}_{3}{ }^{2-}\right]=5 K_{2}$. Note that $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ has decreased as a result of adding $\mathrm{H}_{2} \mathrm{CO}_{3}$ to the solution.
97. (D) First, it is most important to get a general feel for the direction of the reaction by determining the reaction quotient:
$\mathrm{Q}=\frac{[\mathrm{C}(\mathrm{aq})]}{[\mathrm{A}(\mathrm{aq})] \cdot[\mathrm{B}(\mathrm{aq})]}=\frac{0.1}{0.1 \times 0.1}=10$
Since $\mathrm{Q} \gg \mathrm{K}$, the reaction proceeds toward the reactants. Looking at the reaction in the aqueous phase only, the equilibrium can be expressed as follows:

	$\mathrm{A}(\mathrm{aq})$	$+\mathrm{B}(\mathrm{aq})$	\rightleftharpoons	$\mathrm{C}(\mathrm{aq})$
Initial	0.1	0.1	0.1	
Change	-x	-x		+x
Equil.	$0.1-\mathrm{x}$	$0.1-\mathrm{x}$	$0.1+\mathrm{x}$	

We will do part (b) first, which assumes the absence of an organic layer for extraction:

$$
K=\frac{(0.1+x)}{(0.1-x)(0.1-x)}=0.01
$$

Expanding the above equation and using the quadratic formula, $\mathrm{x}=-0.0996$. Therefore, the concentration of $\mathrm{C}(\mathrm{aq})$ and equilibrium is $0.1+(-0.0996)=4 \times 10^{-4} \mathrm{M}$.

If the organic layer is present for extraction, we can add the two equations together, as shown below:

$$
\begin{aligned}
\mathrm{A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) & \rightleftharpoons \mathrm{C}(\mathrm{aq}) \\
\mathrm{C}(\mathrm{aq}) & \rightleftharpoons \mathrm{C}(\mathrm{or}) \\
\hline \mathrm{A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) & \rightleftharpoons \mathrm{C}(\mathrm{or})
\end{aligned}
$$

$\mathrm{K}=\mathrm{K}_{1} \times \mathrm{K}_{2}=0.1 \times 15=0.15$.

Since the organic layer is present with the aqueous layer, and K_{2} is large, we can expect that the vast portion of C initially placed in the aqueous phase will go into the organic phase.

Therefore, the initial $[\mathrm{C}]=0.1$ can be assumed to be for C (or). The equilibrium can be expressed as follows

	$\mathrm{A}(\mathrm{aq})$	$+\mathrm{B}(\mathrm{aq})$	\rightleftharpoons	$\mathrm{C}(\mathrm{or})$
Initial	0.1	0.1	0.1	
Change	-x	-x		+x
Equil.	$0.1-\mathrm{x}$	$0.1-\mathrm{x}$		$0.1+\mathrm{x}$

We will do part (b) first, which assumes the absence of an organic layer for extraction:

$$
K=\frac{(0.1+x)}{(0.1-x)(0.1-x)}=0.15
$$

Expanding the above equation and using the quadratic formula, $\mathrm{x}=-0.0943$. Therefore, the concentration of C (or) and equilibrium is $0.1+(-0.0943)=6 \times 10^{-4} \mathrm{M}$. This makes sense because the K for the overall reaction is <1, which means that the reaction favors the reactants.

SELF-ASSESSMENT EXERCISES

98. (E)
(a) K_{p} : The equilibrium constant of a reaction where the pressures of gaseous reactants and products are used instead of their concentrations
(b) Q_{c} : The reaction quotient using the molarities of the reactants and products
(c) $\Delta \mathrm{n}_{\text {gas }}$: The difference between the number of moles (as determined from a balanced reaction) of product and reactant gases
99. (E)
(a) Dynamic equilibrium: In a dynamic equilibrium (which is to say, real equilibrium), the forward and reverse reactions happen, but at a constant rate
(b) Direction of net chemical change: In a reversible reaction, if the reaction quotient $\mathrm{Q}_{\mathrm{c}}>\mathrm{K}_{\mathrm{c}}$, then the net reaction will go toward the reactants, and vice versa
(c) Le Châtelier's principle: When a system at equilibrium is subjected to external change (change in partial pressure of reactants/products, temperature or concentration), the equilibrium shifts to a side to diminish the effects of that external change
(d) Effect of catalyst on equilibrium: A catalyst does not affect the final concentrations of the reactants and products. However, since it speeds up the reaction, it allows for the equilibrium concentrations to be established more quickly
100. (E)
(a) Reaction that goes to completion and reversible reaction: In a reversible reaction, the products can revert back to the reactants in a dynamic equilibrium. In a reaction that goes to completion, the formation of products is so highly favored that there is practically no reverse reaction (or the reverse is practically impossible, such as a combustion reaction).
(b) K_{p} and K_{c} : K_{p} is the equilibrium constant using pressures of products and reactants, while K_{c} is the constant for reaction using concentrations.
(c) Reaction quotient (Q) and equilibrium constant expression (K) : The reaction quotient Q is the ratio of the concentrations of the reactants and products expressed in the same format as the equilibrium expression. The equilibrium constant expression is the ratio of concentrations at equilibrium.
(d) Homogeneous and heterogeneous reaction: In a homogeneous reaction, the reaction happens within a single phase (either aqueous or gas). In a heterogeneous reaction, there is more than one phase present in the reaction.
101. (E) The answer is (c). Because the limiting reagent is I_{2} at one mole, the theoretical yield of HI is 2 moles. However, because there is an established equilibrium, there is a small amount of HI which will decompose to yield H_{2} and I_{2}. Therefore the total moles of HI created is close, but less than 2.
102. (E) The answer is (d). The equilibrium expression is:
$\mathrm{K}=\frac{\mathrm{P}\left(\mathrm{SO}_{3}\right)^{2}}{\mathrm{P}\left(\mathrm{SO}_{2}\right)^{2} \mathrm{P}\left(\mathrm{O}_{2}\right)}=100$
If equilibrium is established, moles of SO_{3} and SO_{2} cancel out of the equilibrium expression. Therefore, if $\mathrm{K}=100$, the moles of O_{2} have to be 0.01 to make $\mathrm{K}=100$.
103. (E) The answer is (a). As the volume of the vessel is expanded (i.e., pressure is reduced), the equilibrium shifts ${ }_{\text {toward }}$ the side with more moles of gas.
104. (E) The answer is (b). At half the stoichiometric values, the equilibrium constant is $\mathrm{K}^{1 / 2}$. If the equation is reversed, it is K^{-1}. Therefore, the $\mathrm{K}^{\prime}=\mathrm{K}^{-1 / 2}=\left(1.8 \times 10^{-6}\right)^{-1 / 2}=7.5 \times 10^{-2}$.
105. (E) The answer is (a). We know that $K_{p}=K_{c}(R T)^{\Delta n}$. Since $\Delta n=(3-2)=1, K_{p}=K_{c}(R T)$. Therefore, $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$.
106. (E) The answer is (c). Since the number of moles of gas of products is more than the reactants, increasing the vessel volume will drive the equilibrium more toward the product side. The other options: (a) has no effect, and (b) drives the equilibrium to the reactant side.
107. (E) The equilibrium expression is:

$$
\mathrm{K}=\frac{[\mathrm{C}]^{2}}{[\mathrm{~B}]^{2}[\mathrm{~A}]}=\frac{(0.43)^{2}}{(0.55)^{2}(0.33)}=1.9
$$

108. (E)

(a) As more O_{2} (a reactant) is added, more Cl_{2} is produced.
(b) As HCl (a reactant) is removed, equilibrium shifts to the left and less Cl_{2} is made.
(c) Since there are more moles of reactants, equilibrium shifts to the left and less Cl_{2} is made.
(d) No change. However, the equilibrium is reached faster.
(e) Since the reaction is exothermic, increasing the temperature causes less Cl_{2} to be made.
109. (E) $\mathrm{SO}_{2}(\mathrm{~g})$ will be less than $\mathrm{SO}_{2}(\mathrm{aq})$, because $\mathrm{K}>1$, so the equilibrium lies to the product side, $\mathrm{SO}_{2}(\mathrm{aq})$.
110. (E) Since $K \gg 1$, there will be much more product than reactant
111. (M) The equilibrium expression for this reaction is:
$\mathrm{K}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=35.5$
(a) If $\left[\mathrm{SO}_{3}\right]_{\mathrm{eq}}=\left[\mathrm{SO}_{2}\right]_{\mathrm{eq}}$, then $\left[\mathrm{O}_{2}\right]=1 / 35.5=0.0282 \mathrm{M}$. moles of $\mathrm{O}_{2}=0.0282 \times 2.05 \mathrm{~L}=0.0578$ moles
(b) Plugging in the new concentration values into the equilibrium expression:
$\mathrm{K}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left[2 \times \mathrm{SO}_{2}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{4}{\left[\mathrm{O}_{2}\right]}=35.5$
$\left[\mathrm{O}_{2}\right]=0.113 \mathrm{M}$
moles of $\mathrm{O}_{2}=0.113 \times 2.05 \mathrm{~L}=0.232$ moles
112. (M) This concept map involves the various conditions that affect equilibrium of a reaction, and those that don't. Under the category of conditions that do cause a change, there is changing the partial pressure of gaseous products and reactants, which includes pressure and vessel volume. The changes that do not affect partial pressure are changing the concentration of reactants or products in an aqueous solution, through dilution or concentration. Changing the temperature can affect both aqueous and gaseous reactions. Under the category of major changes that don't affect anything is the addition of a non-reactive gas.

