

- 1. Break the overall reaction into individual oxidation and reduction <u>half-reactions</u>.
- 2. Balance each half reaction for mass (atoms).
 - Add H₂O to balance oxygen, H⁺ to balance hydrogen
- 3. Balance each reaction for charge.
 - Add electrons (e⁻) to equalize charge on both sides of the reaction.
- Multiply the balanced half reactions by the appropriate factors so that the <u>number of electrons transferred</u> in each reaction are the same.
- 5. <u>Add</u> the resulting reactions, <u>cancelling</u> any components that appear on both sides of the equation.
- 6. **DOUBLE CHECK** your result for mass and charge balance!

What about basic solution??

3

Quantifying the Tendency for Something to be Reduced (Oxidized).

Potential: "electron pressure"

- Positive potential \rightarrow Favorable process

Standard Potential (E°):

$\Delta G^{\circ} = -nFE^{\circ}$

- Assumes standard conditions (T = 298K, []=1 M, p = 1 bar)
 - $H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$ is defined as zero (E^o = 0.000 V).
- As reduction potential becomes more positive, the tendency for the reduction reaction to occur increases.
- Values for Standard Reduction Potentials are tabulated.
 - Quantifies the tendency for a material to be reduced (act as an oxidizing agent)
- E° for the reverse reaction (oxidation) is the same size, but opposite sign of the E° for reduction.

5

Standard Potentials					
TABLE 20.1 Some Selected Standard Electrode (Reduction Potentials at 25 °C	v				
Reduction Half-Reaction	E*, V	e Voltmeter	imeter e-		
Acidic solution		H ₃ (g) Latm	-		
$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$	+2.866	→ G → G			
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2O(l)$	+2.075	Ci	Zo		
$S_2O_8^{2-}(aq) + 2 e^- \longrightarrow 2 SO_4^{2-}(aq)$	+2.01				
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(l)$	+1.763	Pr Pr			
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	+1.51	H*(aq) (1 M) (1 M) (1 M)	(1 M)		
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$	+1.455	(a)	b)		
$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$	+1.358	Copyright © 2007 Pearson Prentice Hall, Inc.			
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$	+1.33				
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O(l)$	+1.23	TABLE 20.1 Some Selected Standard Electrode (Reduct	ion)		
$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1.229	Potentials at 25 °C (Continued)	24 C		
$2 IO_3^{-}(aq) + 12 H^+(aq) + 10 e^- \longrightarrow I_2(s) + 6 H_2O(l)$	+1.20	Reduction Half-Reaction	E°, V		
$Br_2(l) + 2 e^- \longrightarrow 2 Br^-(aq)$	+1.065	$Z_n^{2+}(a_n) + 2 a^- \longrightarrow Z_n(s)$	-0.763		
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0.956	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(a)$	-1.676		
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.800	$Mg^{2+}(aq) + 2e^- \longrightarrow Mg(s)$	-2.356		
$Fe^{3+}(aq) + e^- \longrightarrow Fe^{2+}(aq)$	+0.771	$Na^{+}(aq) + e^{-} \longrightarrow Na(s)$	-2.713		
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	+0.695	$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.84		
$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	+0.535	$K^+(aq) + e^- \longrightarrow K(s)$	-2.924		
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.340	$Li^+(ag) + e^- \longrightarrow Li(s)$	-3.040		
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(l) + SO_2(g)$	+0.17				
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2 e^{-} \longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154	Basic solution			
$S(s) + 2 H^+(aq) + 2 e^- \longrightarrow H_2S(g)$	+0.14	$O_3(g) + H_2O(l) + 2 e^- \longrightarrow O_2(g) + 2 OH^-(aq)$	+1.246		
$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$	0	$OCI^{-}(aq) + H_2O(l) + 2 e^{-} \longrightarrow CI^{-}(aq) + 2 OH^{-}(aq)$	+0.890		
$Pb^{2+}(aq) + 2 e^{-} \longrightarrow Pb(s)$	-0.125	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	+0.401		
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.137	$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.828		
$Fe^{2+}(aq) + 2e^- \longrightarrow Fe(s)$	-0.440	Copyright © 2007 Pearson Prentice Hall, Inc.			

Calculating E° _{cell} from E° _{1/2} for the Component Reactions.				
Comparison of the tendencies for each reaction to occur. The reaction will proceed in the direction where ΔG is more favorable. $Zn^0 + Cu^{2+} \rightleftharpoons Zn^{2+} + Cu^0$				
Look at half reactions:				
	E°	ΔG°		
Anode:				
Cathode:				
Overall:				
		7		

