More Acid-Base Reactions and Equilibria

Possible Acid/Base Reactions:

1. Strong Acid/Strong Base

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}
$$

- Net ionic eqn: $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
- Reaction proceeds until one of the two reagents is consumed!
- pH is determined by:

2. Strong Acid/Weak Base (or Weak Acid/Strong Base)

$$
\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

$$
\mathrm{HCN}+\mathrm{NaOH} \rightarrow \mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O}
$$

- Net ionic eqn(s): $\mathrm{H}^{+}+\mathrm{B} \rightarrow \mathrm{HB}^{+} \quad \mathrm{K}=\mathrm{K}_{\mathrm{b}} / \mathrm{K}_{\mathrm{w}}$

$$
\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{~K}=\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{w}}
$$

- Reaction proceeds until one of the two reagents is consumed!
- pH is determined by:

More Acid-Base Reactions and Equilibria

3. Weak Acid/Weak Base
$\mathrm{HCN}+\mathrm{NH}_{3} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{CN}^{-}$
$-\quad$ Net ionic eqn(s): $\mathrm{HA}+\mathrm{B} \rightleftarrows \mathrm{HB}^{+}+\mathrm{A}^{-} \quad \mathrm{K}=\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}} / \mathrm{K}_{\mathrm{w}}$

- Extent of reaction depends on "strength" of HA and B
-pH is determined by:

Example: What is the pH of a solution prepared by adding 10 mL of
0.100 M NaOH to 25 mL of $0.100 \mathrm{M} \mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-10}\right)$?

| | $\mathrm{HCN}+\mathrm{OH}^{-} \rightarrow \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}$ | |
| :---: | :--- | :--- | :--- |
| mol before rxn | | |
| mol after rxn | | |
| $[\mathrm{X}]$ after rxn | | |

- What will determine pH ?

Closer Iook at Acid/Base Equilibria

- Common Ion Effect: Le Chatelier's Principle restated!
- A solution that contains an acid and its conjugate base resists dramatic change in composition

$$
\begin{gathered}
\mathrm{HCN} \rightleftarrows \mathrm{CN}^{-}+\mathrm{H}^{+} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{CN}]}{[\mathrm{HCN}]}=4.0 \times 10^{-10}
\end{gathered}
$$

- We can take advantage of this to prepare solutions that resist a change in $[\mathrm{H}+\mathrm{]}$.

Buffer Solutions

Go back to earlier example using HCN and NaOH . What is the new pH after adding an additional 5 mL of NaOH to the solution already at pH 9.22? How would this compare to a sol'n of $\mathrm{NaOH} @ \mathrm{pH} 9.22$?

	$\mathrm{HCN}+\mathrm{OH}^{-} \rightarrow \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}$	
mol before rxn		
mol after rxn		
$[\times]$ after rxn		

- What is the new pH ?

$$
\mathrm{HCN} \rightleftarrows \mathrm{CN}^{-}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-10}
$$

Buffer Solutions

The pH of a buffer solution depends on:

Henderson-Hasslebach Equation (know where this comes from)

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [conjugate base] }}{\text { [acid] }}
$$

*Can write similar expression for K_{b}

Buffer Considerations

- Preparing buffer solutions:
- Selecting a buffer system:
- Buffer capacity:

General Buffer Strategies

Buffer Examples

Example: What is the pH of a solution prepared by dissolving 15.0 g NaHCO_{3} and $18.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in 1.00 L of $\mathrm{H}_{2} \mathrm{O} ?$

Example: How would you prepare 1.00 L of a pH 5.00 acetic acid/sodium acetate buffer?

Titrations:

Remember the purpose of a titration!

Titration Types

What controls the solution composition as titrant is added?

Strong Acid/Strong Base: Basically a stoichiometry problem

- pH depends on unreacted acid or base ("what's left")

Strong Acid/Weak Base: (or Weak Acid/Strong Base)
Monoprotic:

- 3 regions (types of calculations)
- pH is determined by "what's left"
- Consider stoichiometry component and pH -determination (equilibrium) component
- "happy spots"

Weak Acid/Strong Base Titration $20 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{HNO}_{2}$ with 0.10 M NaOH

Titrations

Polyprotic acid/base titrations:

- Same thought process, just a couple more regions
- Amphiprotic considerations

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{4-}+\mathrm{H}^{+} & \mathrm{pK}_{\mathrm{a} 1}=2.12 \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftarrows \mathrm{HPO}_{4}^{2-}+\mathrm{H}^{+} & \mathrm{pK}_{\mathrm{a} 2}=7.21 \\
\mathrm{HPO}_{4}^{2-} \rightleftarrows \mathrm{PO}_{4}^{3-}+\mathrm{H}^{+} & \mathrm{pK}_{\mathrm{a} 3}=12.32
\end{array}
$$

Weak Acid/Strong Base Titration
$20 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ with 0.10 M NaOH

Titrations

- Titrating bases with strong acids:
- Same general concepts, just work with K_{b}

Titrations: End Point Determination

Indicators:

- Weak acids (bases) that change properties when H^{+}is lost (or gained)
- Choosing an indicator
- Titration error

- Other means to determine endpoints

