Duoo	ACIO	
		Arrhenius
		Lauria
		Brönsted/Lowry

-			ouongui	
.E	16.1 Relative Strengths	of Some Common Brør	nsted–Lowry Acids and Bases	
	Acid		Conjugate Base	
	Perchloric acid	HClO ₄	Perchlorate ion	ClO ₄ -
2	 Hydroiodic acid 	HI	Iodide ion	I
	Hydrobromic acid	HBr	Bromide ion	Br ⁻
	Hydrochloric acid	HCI	Chloride ion	Cl ⁻
	Sulfuric acid	H ₂ SO ₄	Hydrogen sulfate ion	HSO ₄ ⁻
	Nitric acid	HNO ₃	Nitrate ion	NO3
	Hydronium ion ^a	H ₃ O ⁺	Water ^a	H ₂ O
	Hydrogen sulfate ion	HSO ₄ ⁻	Sulfate ion	SO42-
	Nitrous acid	HNO ₂	Nitrite ion	NO2 ⁻
	Acetic acid	HC ₂ H ₃ O ₂	Acetate ion	$C_{2}H_{3}O_{2}^{-}$
	Carbonic acid	H ₂ CO ₃	Hydrogen carbonate ion	HCO ₃ ⁻
	Ammonium ion	NH4 ⁺	Ammonia	NH ₃
	Hydrogen carbonate ion	HCO ₃ ⁻	Carbonate ion	CO32-
	Water	H ₂ O	Hydroxide ion	OH-
	Methanol	CH ₃ OH	Methoxide ion	CH30- <
	Ammonia	NH ₃	Amide ion	NH2

	Solu	tion Acid	ity and pl	4	
pH is a me	asure of [H ⁻	*] (actually acti	vity)		
		pH = -logA _{H+} ≈	-log[H+]		
NOTE:	you can "p"	almost anything	!		
NOTE: Acidity an	you can "p" d basicity u	almost anything se "pure" wate	! r as a referenc	e	
NOTE: Acidity an	you can "p" a	almost anything se "pure" wate	י r as a referenc	e nH	1
NOTE: Acidity an	you can "p" d basicity u Solution Neutral	almost anything se "pure" wate [H ⁺] = 1.0 x 10 ⁻⁷ M	! r as a referenc [OH ⁻] = 1.0 x 10 ⁻⁷ M	e pH]
NOTE: Acidity an	you can "p" d basicity u Solution Neutral Acidic	almost anything se "pure" wate $[H^+]$ = 1.0 x 10 ⁻⁷ M > 1.0 x 10 ⁻⁷ M	! r as a referenc [OH ⁻] = 1.0 x 10 ⁻⁷ M < 1.0 x 10 ⁻⁷ M	e pH	

K_a, K_b and pH

Use the same approach for bases and acidic(basic) salts

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ K_b = 1.8 \times 10^{-5}$$

 $\text{KCN: CN}^{-} + \text{H}_2\text{O} \rightleftarrows \text{HCN} + \text{OH}^{-} \qquad \text{K}_{\text{b}} = 2.5 \text{ x } 10^{-5}$

9

- Remember conjugate acid/base concepts

Example: What is the pH of a solution that is 0.10 M KCN?

Systematic Approach to Simultaneous Equilibria

Example revisited: A solution contains 0.10M each of HF (K_a =7.2 x 10⁻⁴), HCN (K_a =6.2 x 10⁻¹⁰) and Phenol (K_a =1.6 x 10⁻¹⁰). What is the pH of this solution?

How might we treat this rigorously? Four equilibria to consider:

$$\begin{split} HF \rightleftharpoons H^{+} + F^{-} & K_{1} = 7.2 \text{ x } 10^{-4} = \underline{[H^{+}][F^{-}]} \\ & [HF] \\ HCN \rightleftharpoons H^{+} + CN^{-} & K_{2} = 6.2 \text{ x } 10^{-10} = \underline{[H^{+}][CN^{-}]} \\ & [HCN] \\ HA \rightleftharpoons H^{+} + A^{-} & K_{3} = 1.6 \text{ x } 10^{-10} = \underline{[H^{+}][A^{-}]} \\ & [HA] \\ H_{2}O \rightleftharpoons H^{+} + OH^{-} & K_{w} = 1.0 \text{ x } 10^{-14} = [H^{+}][OH^{-}] \end{split}$$

Eight unknowns, we need eight equations, where will we get 4 more? Remember, this is chemistry!

12

One last thought

What is the pH of 10⁻²M HCI?

What is the pH of 10⁻⁴M HCI?

What is the pH of 10⁻⁶M HCI?

What is the pH of 10⁻⁸M HCI?

• How do we treat this?

15