## Acid-Base Chemistry

Varying Definitions, depends on context/application

|  | Acid | Base |  |
| :--- | :--- | :--- | :---: |
| Arrhenius |  |  |  |
|  |  |  |  |
| Brönsted/Lowry |  |  |  |
|  |  |  |  |
| Lewis |  |  |  |
|  |  |  |  |

## Key Considerations

## Autoprotolysis of Water

- Water is an amphiprotic substance: can behave as either an acid or base.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}
\end{gathered}
$$

- Important to keep this in mind!


## Conjugate Acid/Base Pairs:

- Species that differ by one $\mathrm{H}^{+}$

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

- When an acid dissociates to lose a proton, it forms a conjugate base
- When a base accepts a proton, it forms a conjugate acid


## Acid/Base Strength

"Strength" = measure of efficiency of production of $\mathrm{H}^{+}\left(\right.$or $\left.\mathrm{OH}^{-}\right)$, extent of dissociation.

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

Strong Acids (or Bases) dissociate completely in water

- Very large K for dissociation

Weak Acids (or Bases) only dissociate partially

- Very small K for dissociation

What does this mean for the conjugate base (acid)?

- See Table 16.1
TABLE 16.2
The Common Strong
Acids and Strong Bases

${ }^{5} \mathrm{H}_{2} \mathrm{SO}_{4}$ ionizes in two distinct steps. It is a strong acid only in its first ionization
- Know strong acids/bases assume everything else is weak! $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$, $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{LiOH}$ Table 16.2)
- The strongest acid/base determines the tendency (direction) of the reaction


## Acid/Base Strength

| TABLE 16.1 | Relative Strengths of Some Common Bronsted-Lowry Acids and Bases |  |
| :--- | :--- | :--- | :--- |
|  |  |  |
|  | Acid | Conjugate Base |

${ }^{\text {a }}$ The hydronium ion-water combination refers to the ease with which a proton is passed from one water molecule to another; that is, $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{O}^{+}$

## Solution Acidity and pH

- Because water is amphiprotic, "pure" water will contain a small amount of OH - and $\mathrm{H}^{+}$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O} \mathrm{H}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}\left(\text { at } 25^{\circ} \mathrm{C}\right)
\end{gathered}
$$

EXAMPLE: What is the $\left[\mathrm{H}^{+}\right]$in "pure" water?

## Solution Acidity and pH

pH is a measure of $\left[\mathrm{H}^{+}\right]$(actually activity)

$$
\mathrm{pH}=-\log \mathrm{A}_{\mathrm{H}+} \approx-\log \left[\mathrm{H}^{+}\right]
$$

NOTE: you can "p" almost anything!

Acidity and basicity use "pure" water as a reference

| Solution | $\left[\mathrm{H}^{+}\right]$ | $\left[\mathrm{OH}^{-}\right]$ | pH |
| :--- | :---: | :---: | :---: |
| Neutral | $=1.0 \times 10^{-7} \mathrm{M}$ | $=1.0 \times 10^{-7} \mathrm{M}$ |  |
| Acidic | $>1.0 \times 10^{-7} \mathrm{M}$ | $<1.0 \times 10^{-7} \mathrm{M}$ |  |
| Basic | $<1.0 \times 10^{-7} \mathrm{M}$ | $>1.0 \times 10^{-7} \mathrm{M}$ |  |

## Useful Things to Remember

1. $K_{a}$ for an acid and $K_{b}$ for its conjugate base are related!

| $\mathrm{HA} \rightleftarrows \mathrm{H}^{+}+\mathrm{A}^{-}$ |  |
| :---: | :--- |
| $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-}$ |  |
|  |  |

In general: $K_{a} K_{b}=K_{w}$ for conjugate acid/base pairs!
2. pH and pOH are related!

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

3. As $[\mathrm{H}+]$ increases, $[\mathrm{OH}-]$ decreases (\& vice versa)

- Kw must be satisfied!!!

4. If you know pH , you also must know $\mathrm{pOH},[\mathrm{H}+$, and $[\mathrm{OH}-]$

- $\mathrm{K}_{\mathrm{w}}$ rules!
$-\left[\mathrm{H}^{+}\right]=10-\mathrm{pH} \ldots$


## $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$ and pH

Example: What is the pH of a 0.10 M solution of acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right) ?$

Example: A 0.10 M solution of propanoic acid has a pH of 2.94. What is the value of $\mathrm{K}_{\mathrm{a}}$ for propanoic acid?

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Rule of Thumb: If $100 \mathrm{~K}_{\mathrm{a}}<[\mathrm{HA}]_{\text {initial }}$, assume $\mathrm{x} \ll[\mathrm{HA}]_{\text {initial }}$

- avoids quadratic, saves a little math
- quadratic always works!


## $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$ and pH

Use the same approach for bases and acidic(basic) salts

$$
\begin{gathered}
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5} \\
\mathrm{KCN}: \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HCN}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=2.5 \times 10^{-5}
\end{gathered}
$$

- Remember conjugate acid/base concepts


## Example: What is the pH of a solution that is 0.10 M KCN ?

## Structure-Acidity Relationships

Strength of an acid depends on:

- How tightly the proton is held
- Stability of the conjugate base


| :Ö: | :Ö: |
| :---: | :---: |
|  | $\mathrm{H}-\mathrm{O}-\mathrm{S}-\ddot{\mathrm{O}}-\mathrm{H}$ |
| $K_{\mathrm{a}_{1}} \approx 10^{3}$ | $K_{\mathrm{a}_{1}}=1.3 \times 10^{-2}$ |





## Dealing with Mixtures and Polyprotics

- There can only be one $\left[\mathrm{H}^{+}\right]$in solution! (or [anything] for that matter) At equilibrium, all K's are satisfied.
- This can make things hairy! Look for simplification! Remember, you understand some chemistry!
Example: Consider a solution that contains 0.10 M each of HF $\left(\mathrm{K}_{\mathrm{a}}=7.2 \times 10^{-4}\right)$, HCN $\left(\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}\right)$ and Phenol $\left(\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-10}\right)$. What is the pH of this solution?

$$
\begin{aligned}
\mathrm{HF} & \rightleftarrows \mathrm{H}^{+}+\mathrm{F}^{-} \\
\mathrm{HCN} & \rightleftarrows \mathrm{H}^{+}+\mathrm{CN}^{-} \\
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} & \rightleftarrows \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}
\end{aligned}
$$

Polyprotic acids and bases:

- REMEMBER: Each successive step gets weaker!

Example: Calculate the pH of a 0.10 M solution of Oxalic Acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{pK}_{\mathrm{a} 1}=1.23, \mathrm{pK}_{\mathrm{a} 2}=4.19\right)$.

## Systematic Approach to Simultaneous Equilibria

Example revisited: A solution contains 0.10 M each of HF ( $\mathrm{K}_{\mathrm{a}}=7.2 \mathrm{x}$ $\left.10^{-4}\right)$, HCN $\left(\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}\right)$ and Phenol ( $\left.\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-10}\right)$. What is the pH of this solution?

How might we treat this rigorously? Four equilibria to consider:

$$
\begin{aligned}
\mathrm{HF} \rightleftarrows \mathrm{H}^{+}+\mathrm{F}^{-} & \mathrm{K}_{1}=7.2 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]} \\
\mathrm{HCN} \rightleftarrows \mathrm{H}^{+}+\mathrm{CN}^{-} & \mathrm{K}_{2}=6.2 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{CN}]}{[\mathrm{HCN}]} \\
\mathrm{HA} \rightleftarrows \mathrm{H}^{+}+\mathrm{A}^{-} & \mathrm{K}_{3}=1.6 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}^{+}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Eight unknowns, we need eight equations, where will we get 4 more?
Remember, this is chemistry!

## Systematic Approach to Simultaneous Equilibria

Charge Balance: solutions must be neutral [+] = [-]

- Only one charge balance equation exists for the system!

Mass Balance: \# moles of each atom cannot change!

- Multiple mass balance equations may exist for the system.

Lots of algebra later gets us a tough equation to solve!

- But we have the tools to do it!


## Method of Successive Approximations

1. Make a guess,
2. Run calculation based on that guess,
3. Use result to make a new guess,
4. Repeat 2 and 3 until "convergence".

Spreadsheets make this fairly easy.

$$
\left[\mathrm{H}^{+}\right]=\frac{0.10 \mathrm{~K}_{1}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{1}}+\frac{0.10 \mathrm{~K}_{2}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{2}}+\frac{0.10 \mathrm{~K}_{3}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{3}}+\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}
$$

After about 100 iterations, we get convergence to $[\mathrm{H}+]=0.008133 \mathrm{M}$, $\mathrm{pH}=2.09$

Ignoring everything but HF and solving quadratic gives $[\mathrm{H}+]=0.008133 \mathrm{M}$, $\mathrm{pH}=2.09$


## One last thought

What is the pH of $10^{-2} \mathrm{M} \mathrm{HCl}$ ?
What is the pH of $10^{-4} \mathrm{M} \mathrm{HCl}$ ?
What is the pH of $10^{-6} \mathrm{M} \mathrm{HCl}$ ?
What is the pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ ?

- How do we treat this?

