Chapter 6

Solutions to Selected Integrative and Advanced Exercises
54. (M)
(a) In this case, H_{2} is the limiting reagent.

Volume $\mathrm{NH}_{3}=313 \mathrm{~L} \mathrm{H}_{2} \times \frac{2 \mathrm{~L} \mathrm{NH}_{3}}{3 \mathrm{~L} \mathrm{H}_{2}}=209 \mathrm{~L} \mathrm{NH}_{3}$
(b) Moles of NH_{3} (@ $315^{\circ} \mathrm{C}$ and 5.25 atm)

$$
\begin{aligned}
& =\frac{5.25 \mathrm{~atm} \times 313 \mathrm{~L}}{0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}} \times(315+273) \mathrm{K}}=3.41 \times 10^{1} \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=2.27 \times 10^{1} \mathrm{~mol} \mathrm{NH}_{3} \\
& V\left(@ 25^{\circ} \mathrm{C}, 727 \mathrm{mmHg}\right)=\frac{2.27 \times 10^{1} \mathrm{~mol} \mathrm{NH}_{3} \times 0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}} \times 298 \mathrm{~K}}{727 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}}=5.80 \times 10^{2} \mathrm{~L} \mathrm{NH}_{3}
\end{aligned}
$$

65. (M) In this problem, you don't need to explicitly solve for moles of gas, since you are looking at the relationship between pressure and volume.
$\mathrm{mol} \mathrm{O}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(4.0 \mathrm{~atm})(1.0 \mathrm{~L})}{\mathrm{RT}}=\frac{4.0}{\mathrm{RT}}$
$\mathrm{mol} \mathrm{N}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(2.0 \mathrm{~atm})(2.0 \mathrm{~L})}{\mathrm{RT}}=\frac{4.0}{\mathrm{RT}}$
total mol. of gas $=8.0 / \mathrm{RT}$

Therefore,
$\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{8.0}{\mathrm{RT}} \cdot \frac{\mathrm{RT}}{2.0}=4.0 \mathrm{~atm}$
72. (M) The work for this problem is nearly identical to the above problem.
$2 \mathrm{KClO}_{3} \xrightarrow{\Delta} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
The pressure of O_{2} is determined by subtracting the known vapor pressure of water at the given temperature from the measured total pressure.
$\mathrm{P}_{\mathrm{O} 2}=\mathrm{P}_{\mathrm{TOT}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=323$ torr -25.22 torr $=298$ torr
$\mathrm{P}_{\mathrm{atm}}=298 \mathrm{mmHg} / 760 \mathrm{mmHg}=0.392 \mathrm{~atm}$
$\mathrm{mol} \mathrm{O}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(0.392 \mathrm{~atm})(0.229 \mathrm{~L})}{\left(0.08206 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1}\right)(299 \mathrm{~K})}=0.003657 \mathrm{~mol}$
Mass of KClO_{3} is then determined as follows:
$0.003657 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{KClO}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{122.54 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{KClO}_{3}}=0.299 \mathrm{~g} \mathrm{KClO}_{3}$
$\% \mathrm{KClO}_{3}=\frac{0.299 \mathrm{~g}}{0.415 \mathrm{~g}} \times 100=72 \%$
95. (M) First, calculate the number of moles of gas:
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(1.00 \mathrm{~atm})(6.30 \mathrm{~L})}{\left(0.082058 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1}\right)(323 \mathrm{~K})}=0.2377 \mathrm{~mol}$
Molecular mass (MM) then can be calculated:
$M M=(10.00 \mathrm{~g}) /(0.2377 \mathrm{~mol})=42.069 \mathrm{~g} / \mathrm{mol}$
Now we must determine the mole ratio of C to H :
$85.6 \mathrm{~g} \mathrm{C} \times(1 \mathrm{~mol} \mathrm{C} / 12.01 \mathrm{~g} \mathrm{C})=7.13 \mathrm{~mol}$
$14.4 \mathrm{~g} \mathrm{H} \times(1 \mathrm{~mol} \mathrm{H} / 1.01 \mathrm{~g} \mathrm{H})=14.3 \mathrm{~mol}$
Now, divide both by the smallest number:
$\mathrm{C}: \mathrm{C}$ mole ratio $=1$
$\mathrm{H}: \mathrm{C}$ mole ratio $=2$
Therefore, the empirical formula is CH_{2}, with a formula unit molar mass of $\sim 14.03 \mathrm{~g} / \mathrm{mol}$. To determine molecular formula, divide MM by formula unit MM:
$42.069 / 14.03=3.00$. Therefore, the molecular formula is $\mathrm{C}_{3} \mathrm{H}_{6}$.
96. (M) First we determine the molar mass of the hydrocarbon.

$$
\mathrm{M}=\frac{\mathrm{mRT}}{\mathrm{PV}}=\frac{0.7178 \mathrm{~g} \times 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}(65.0+273.2) \mathrm{K}}{\left(99.2 \mathrm{kPa} \times \frac{0.00987 \mathrm{~atm}}{1 \mathrm{kPa}}\right) \times 0.3907 \mathrm{~L}}=52.0 \mathrm{~g} / \mathrm{mol}
$$

Now determine the empirical formula. A hydrocarbon contains just hydrogen and carbon.

$$
\begin{aligned}
& \text { amount } \mathrm{C}=2.4267 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{1 \mathrm{~mol} \mathrm{CO}_{2}}}{1}=0.05514 \mathrm{~mol} \mathrm{C} \div 0.05514 \rightarrow 1.000 \mathrm{~mol} \mathrm{C} \\
& \text { amount } \mathrm{H}=0.4967 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}}{1.0 .05513 \mathrm{molH} \div 0.05514 \rightarrow 1.000 \mathrm{~mol} \mathrm{H}}
\end{aligned}
$$

The empirical formula is CH. This gives an empirical molar mass of $13 \mathrm{~g} / \mathrm{mol}$, almost precisely onefourth of the experimental molar mass. The molecular formula is therefore $\mathrm{C}_{4} \mathrm{H}_{4}$.
98. (M) First, let's convert the given units to those easier used:
$\mathrm{P}=101 \mathrm{kPa} \times(1 \mathrm{barr} / 101 \mathrm{kPa}) \times(1 \mathrm{~atm} / 1.01 \mathrm{barr})=0.9901 \mathrm{~atm}$
$\mathrm{T}=819^{\circ} \mathrm{C}+273 \mathrm{~K}=1092 \mathrm{~K}$
$\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{2}=128 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}}{64.052 \mathrm{~g}}=1.998 \mathrm{~mol}$
mol gas $=1.998 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2} \times \frac{3 \mathrm{~mol} \text { gas }}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}}=5.994$
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{(5.994 \mathrm{~mol})\left(0.082058 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1}\right)(1092 \mathrm{~K})}{0.9901 \mathrm{~atm}}=542 \mathrm{~L}$
107. (D)
(a) $\mathrm{M}_{\mathrm{av}}=\frac{8.0}{100}\left(44.01 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+\frac{23.2}{100}\left(28.01 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+\frac{17.7}{100}\left(2.016 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+\frac{1.1}{100}\left(16.043 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+\frac{50.5}{100}\left(28.01 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)$
$\mathrm{M}_{\mathrm{av}}=24.56 \mathrm{~g} / \mathrm{mol} \quad$ density $=\frac{\mathrm{PM}}{\mathrm{RT}}=\frac{\left(763 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}\right) 24.56 \frac{\mathrm{~g}}{\mathrm{~mol}}}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{K} \mathrm{mol}}\right) 296 \mathrm{~K}}=1.015 \frac{\mathrm{~g}}{\mathrm{~L}}$
(b) $\mathrm{P}_{\mathrm{co}}=\mathrm{P}_{\text {total }} \times \frac{\mathrm{V} \%}{100 \%}=763 \mathrm{mmHg} \times \frac{23.2 \%}{100 \%}=177 \mathrm{mmHg}$ or 0.233 atm
(c) $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Use the fact that volume is directly proportional to moles when the pressure and temperature are constant. 1000 L of producer gas contains:
232 LCO which requires $\quad 116 \mathrm{~L} \mathrm{O}_{2}$
$177 \mathrm{~L} \mathrm{H}_{2} \quad$ which requires $\quad 88.5 \mathrm{~L} \mathrm{O}_{2}$
$11 \mathrm{LCH}_{4}$ which requires $\quad \underline{22 \mathrm{~L} \mathrm{O}_{2}}$
$226.5 \mathrm{~L} \mathrm{O}_{2}$ (Note: air is $20.95 \% \mathrm{O}_{2}$ by volume)
Thus, the reaction requires $\frac{226.5 \mathrm{~L}}{0.2095}=1.08 \times 10^{3} \mathrm{~L}$.
108. (M) First, balance the equation:
$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}+27 \mathrm{O}_{2} \rightarrow 20 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$
mol O 2_{2} needed: $2000 \mathrm{~g} \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}}{304.52 \mathrm{~g} \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}} \times \frac{27 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}}$
$=177.33 \mathrm{~mol} \mathrm{O}_{2}$
Using the ideal gas law, we can determine the volume of $177.33 \mathrm{~mol}^{\text {of } \mathrm{O}_{2} \text { : }}$
$\operatorname{vol~} \mathrm{O}_{2}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{(177.33 \mathrm{~mol})\left(0.082058 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}{1.00 \mathrm{~atm}}=4336.30 \mathrm{~L} \mathrm{O}_{2}$
To determine the volume of air needed, we note that O_{2} represents 20.9% of air by volume: $x(0.205)=4336.30$ L. Solving for x gives 20698 L , or 2.070×10^{4} L.
113. (M) First, determine the moles of Cl_{2} and NaClO . Then, determine the limiting reagent $\mathrm{mol} \mathrm{Cl}_{2}=\frac{(4.66 \mathrm{~atm})(1.0 \mathrm{~L})}{\left(0.082058 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1}\right)(283 \mathrm{~K})}=0.2007 \mathrm{~mol}$
$\mathrm{mol} \mathrm{NaClO}=(0.750 \mathrm{~L})(2.00 \mathrm{M})=1.50 \mathrm{~mol}$
$0.2007 \mathrm{~mol} \mathrm{Cl}_{2} \times \frac{4 \mathrm{~mol} \mathrm{NaClO}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}=0.8028 \mathrm{~mol} \mathrm{NaClO}$ needed
Therefore, NaClO is the excess reagent.
Now, we must calculate the theoretical yield of ClO_{2} :
$0.2007 \mathrm{~mol} \mathrm{Cl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{ClO}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}} \times \frac{67.45 \mathrm{~g} \mathrm{ClO}_{2}}{1 \mathrm{~mol} \mathrm{ClO}_{2}}=27.07 \mathrm{~g} \mathrm{ClO}_{2}$
$\%$ yield $=\frac{25.9}{27.07} \times 100=95.7 \%$
119. (D) Potential energy of an object is highest when the kinetic energy of the object is zero and the object has attained its maximum height. Therefore, we must determine the kinetic energy. But first, we have to determine the velocity of the N_{2} molecule.

$$
\begin{aligned}
& \overline{\mathrm{u}_{\mathrm{rms}}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}=\sqrt{\frac{3\left(8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)(300 \mathrm{~K})}{28.00 \times 10^{-3} \mathrm{~kg}}}=517 \mathrm{~m} / \mathrm{s} \\
& \overline{\mathrm{e}_{\mathrm{k}}}=\frac{1}{2} \mathrm{~m}_{\mathrm{u}_{\mathrm{rms}}}{ }^{2}=\frac{1}{2}\left(28.00 \times 10^{-3} \mathrm{~kg}\right)(517 \mathrm{~m} / \mathrm{s})^{2}=3742 \mathrm{~J} \\
& \overline{\mathrm{e}_{\mathrm{k}}}=\overline{\mathrm{e}_{\mathrm{p}}} \Rightarrow \mathrm{~m} \cdot \mathrm{~g} \cdot \mathrm{~h}=\left(28.00 \times 10^{-3} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot \mathrm{h}=3742 \mathrm{~J}
\end{aligned}
$$

Solving for h , the altitude reached by an N_{2} molecule is 13637 m or 13.6 km .

