Chapter 6 Solutions to Selected Integrative and Advanced Exercises

54. (M)
(a) In this case, H₂ is the limiting reagent.
Volume NH₃ = 313 L H₂ ×
$$\frac{2 L NH_3}{3 L H_2}$$
 = 209 L NH₃
(b) Moles of NH₃ (@ 315 °C and 5.25 atm)
= $\frac{5.25 \text{ atm} \times 313 \text{ L}}{0.08206 \frac{\text{L atm}}{\text{mol K}} \times (315 + 273)\text{K}}$ = 3.41×10¹ mol H₂ × $\frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2}$ = 2.27×10¹ mol NH₃
 $V(@25^{\circ}\text{C}, 727\text{mmHg}) = \frac{2.27 \times 10^1 \text{ mol NH}_3 \times 0.08206 \frac{\text{L atm}}{\text{mol K}} \times 298 \text{ K}}{727 \text{ mmHg} \times \frac{1 \text{ atm}}{760 \text{ mmHg}}}$ = 5.80×10² L NH₃

<u>65.</u> (M) In this problem, you don't need to explicitly solve for moles of gas, since you are looking at the relationship between pressure and volume.

mol O₂ =
$$\frac{PV}{RT} = \frac{(4.0 \text{ atm})(1.0 \text{ L})}{RT} = \frac{4.0}{RT}$$

mol N₂ = $\frac{PV}{RT} = \frac{(2.0 \text{ atm})(2.0 \text{ L})}{RT} = \frac{4.0}{RT}$
total mol. of gas = 8.0/RT

Therefore,

$$P = \frac{nRT}{V} = \frac{8.0}{RT} \cdot \frac{RT}{2.0} = 4.0 \text{ atm}$$

72. (M) The work for this problem is nearly identical to the above problem.

$$2\text{KClO}_3 \xrightarrow{\Delta} 2\text{KCl} + 3\text{O}_2$$

The pressure of O_2 is determined by subtracting the known vapor pressure of water at the given temperature from the measured total pressure.

 $P_{O2} = P_{TOT} - P_{H2O} = 323 \text{ torr} - 25.22 \text{ torr} = 298 \text{ torr}$

 $P_{atm} = 298 \text{ mmHg} / 760 \text{ mmHg} = 0.392 \text{ atm}$

mol O₂ =
$$\frac{PV}{RT} = \frac{(0.392 \text{ atm})(0.229 \text{ L})}{(0.08206 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1})(299 \text{ K})} = 0.003657 \text{ mol}$$

Mass of KClO₃ is then determined as follows:

$$0.003657 \text{ mol } O_2 \times \frac{2 \text{ mol KClO}_3}{3 \text{ mol } O_2} \times \frac{122.54 \text{ g}}{1 \text{ mol KClO}_3} = 0.299 \text{ g KClO}_3$$

%KClO₃ = $\frac{0.299 \text{ g}}{0.415 \text{ g}} \times 100 = 72\%$

95. (M) First, calculate the number of moles of gas:

 $n = \frac{PV}{RT} = \frac{(1.00 \text{ atm})(6.30 \text{ L})}{(0.082058 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1})(323 \text{ K})} = 0.2377 \text{ mol}$

Molecular mass (MM) then can be calculated: MM = (10.00 g)/(0.2377 mol) = 42.069 g/mol

Now we must determine the mole ratio of C to H: 85.6 g C \times (1 mol C/12.01 g C) = 7.13 mol 14.4 g H \times (1 mol H/1.01 g H) = 14.3 mol

Now, divide both by the smallest number: C:C mole ratio = 1 H:C mole ratio = 2

Therefore, the empirical formula is CH_2 , with a formula unit molar mass of ~14.03 g/mol. To determine molecular formula, divide MM by formula unit MM: 42.069/14.03 = 3.00. Therefore, the molecular formula is C_3H_6 .

96. (M) First we determine the molar mass of the hydrocarbon.

$$M = \frac{mRT}{PV} = \frac{0.7178 \,\text{g} \times 0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} (65.0 + 273.2) \,\text{K}}{\left(99.2 \,\text{kPa} \times \frac{0.00987 \,\text{atm}}{1 \,\text{kPa}}\right) \times 0.3907 \,\text{L}} = 52.0 \,\text{g/mol}$$

Now determine the empirical formula. A hydrocarbon contains just hydrogen and carbon.

amount C = 2.4267 g CO₂ ×
$$\frac{1 \mod CO_2}{44.01 \text{ g CO}_2}$$
 × $\frac{1 \mod C}{1 \mod CO_2}$ = 0.05514 mol C ÷ 0.05514 → 1.000 mol C

amount H =
$$0.4967 \text{ g H}_2\text{O} \times \frac{1 \text{ mol H}_2\text{O}}{18.02 \text{ g H}_2\text{O}} \times \frac{2 \text{ mol H}}{1 \text{ mol H}_2\text{O}} = 0.05513 \text{ mol H} \div 0.05514 \rightarrow 1.000 \text{ mol H}$$

The empirical formula is CH. This gives an empirical molar mass of 13 g/mol, almost precisely one-fourth of the experimental molar mass. The molecular formula is therefore C_4H_4 .

98. (M) First, let's convert the given units to those easier used: P = 101 kPa × (1 barr/101 kPa) × (1 atm/1.01 barr) = 0.9901 atm T = 819 °C + 273 K = 1092 K mol NH₄NO₂ = 128 g NH₄NO₂ × $\frac{1 \text{ mol NH}_4 \text{NO}_2}{64.052 \text{ g}}$ = 1.998 mol mol gas = 1.998 mol NH₄NO₂ × $\frac{3 \text{ mol gas}}{1 \text{ mol NH}_4 \text{NO}_2}$ = 5.994 V = $\frac{\text{nRT}}{\text{P}} = \frac{(5.994 \text{ mol})(0.082058 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1})(1092 \text{ K})}{0.9901 \text{ atm}}$ = 542 L 107. (D)

(a)
$$M_{av} = \frac{8.0}{100} \left(44.01 \frac{g}{mol} \right) + \frac{23.2}{100} \left(28.01 \frac{g}{mol} \right) + \frac{17.7}{100} \left(2.016 \frac{g}{mol} \right) + \frac{1.1}{100} \left(16.043 \frac{g}{mol} \right) + \frac{50.5}{100} \left(28.01 \frac{g}{mol} \right)$$

 $M_{av} = 24.56 \text{ g/mol}$ density $= \frac{PM}{RT} = \frac{\left(763 \text{ mmHg} \times \frac{1 \text{ atm}}{760 \text{ mmHg}} \right) 24.56 \frac{g}{mol}}{\left(0.08206 \frac{L \text{ atm}}{K \text{ mol}} \right) 296 \text{ K}} = 1.015 \frac{g}{L}$
(b) $P_{co} = P_{total} \times \frac{V\%}{100\%} = 763 \text{ mmHg} \times \frac{23.2\%}{100\%} = 177 \text{ mmHg or } 0.233 \text{ atm}$

(c) $CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g)$ $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$ $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$

Use the fact that volume is directly proportional to moles when the pressure and temperature are constant. 1000 L of producer gas contains:

232 L CO	which requires	116 L O ₂
177 L H ₂	which requires	88.5 L O ₂
11 L CH ₄	which requires	<u>22 L O</u> ₂
	-	$226.5 \overline{\text{L}} \text{ O}_2$ (Note: air is 20.95 % O ₂ by volume)

Thus, the reaction requires $\frac{226.5 \text{ L}}{0.2095} = 1.08 \times 10^3 \text{ L}$.

<u>108.</u> (**M**) First, balance the equation: $C_{20}H_{32}O_2 + 27 O_2 \rightarrow 20 CO_2 + 16 H_2O$

mol O₂ needed: 2000 g C₂₀H₃₂O₂ ×
$$\frac{1 \text{ mol } C_{20}H_{32}O_2}{304.52 \text{ g } C_{20}H_{32}O_2}$$
 × $\frac{27 \text{ mol } O_2}{1 \text{ mol } C_{20}H_{32}O_2}$
= 177.33 mol O₂

Using the ideal gas law, we can determine the volume of 177.33 mol of O₂: vol O₂ = $\frac{nRT}{P} = \frac{(177.33 \text{ mol})(0.082058 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1})(298 \text{ K})}{1.00 \text{ atm}} = 4336.30 \text{ L O}_2$ To determine the volume of air needed, we note that O₂ represents 20.9% of air by volume: x(0.205) = 4336.30 \text{ L}. Solving for x gives 20698 L, or 2.070×10⁴ L.

113. (M) First, determine the moles of Cl₂ and NaClO. Then, determine the limiting reagent mol Cl₂ = $\frac{(4.66 \text{ atm})(1.0 \text{ L})}{(0.082058 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1})(283 \text{ K})} = 0.2007 \text{ mol}$ mol NaClO = (0.750 L)(2.00 M) = 1.50 mol $0.2007 \text{ mol } \text{Cl}_2 \times \frac{4 \text{ mol } \text{NaClO}}{1 \text{ mol } \text{Cl}_2} = 0.8028 \text{ mol } \text{NaClO} \text{ needed}$ Therefore, NaClO is the excess reagent.

Now, we must calculate the theoretical yield of ClO_{2:}

$$0.2007 \text{ mol } \text{Cl}_2 \times \frac{2 \text{ mol } \text{ClO}_2}{1 \text{ mol } \text{Cl}_2} \times \frac{67.45 \text{ g } \text{ClO}_2}{1 \text{ mol } \text{ClO}_2} = 27.07 \text{ g } \text{ClO}_2$$

%yield = $\frac{25.9}{27.07} \times 100 = 95.7\%$

<u>119.</u> (**D**) Potential energy of an object is highest when the kinetic energy of the object is zero and the object has attained its maximum height. Therefore, we must determine the kinetic energy. But first, we have to determine the velocity of the N_2 molecule.

$$\overline{u_{rms}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})(300 \text{ K})}{28.00 \times 10^{-3} \text{ kg}}} = 517 \text{ m/s}$$

$$\overline{e_k} = \frac{1}{2} \overline{mu_{rms}}^2 = \frac{1}{2} (28.00 \times 10^{-3} \text{ kg})(517 \text{ m/s})^2 = 3742 \text{ J}$$

$$\overline{e_k} = \overline{e_p} \Longrightarrow \text{m} \cdot \text{g} \cdot \text{h} = (28.00 \times 10^{-3} \text{ kg})(9.8 \text{ m/s}^2) \cdot \text{h} = 3742 \text{ J}$$

Solving for h, the altitude reached by an N_2 molecule is 13637 m or 13.6 km.