Chapter 1. Answers to selected Integrative and Advanced Exercises

69. (D) volume needed $=18,000 \mathrm{gal} \times \frac{4 \mathrm{qt}}{1 \mathrm{gal}} \times \frac{0.9464 \mathrm{~L}}{1 \mathrm{qt}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1.00 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~g} \mathrm{Cl}}{10^{6} \mathrm{~g} \text { water }}$

$$
\times \frac{100 \mathrm{~g} \mathrm{soln}}{7 \mathrm{~g} \mathrm{Cl}} \times \frac{1 \mathrm{~mL} \mathrm{soln}}{1.10 \mathrm{~g} \mathrm{soln}} \times \frac{1 \mathrm{~L} \text { soln }}{1000 \mathrm{~mL} \text { soln }}=0.9 \mathrm{~L} \text { soln }
$$

71. (D) Conversion pathway approach:

$$
\begin{aligned}
& \mathrm{NaCl} \text { mass }=330,000,000 \mathrm{mi}^{3} \times\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \times \frac{12 \mathrm{in} .}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)^{3} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \times \frac{1.03 \mathrm{~g}}{1 \mathrm{~mL}} \\
& \times \frac{3.5 \mathrm{~g} \text { sodium chloride }}{100.0 \mathrm{~g} \text { sea water }} \times \frac{1 \mathrm{lb}}{453.6 \mathrm{~g}} \times \frac{1 \mathrm{ton}}{2000 \mathrm{lb}}=5.5 \times 10^{16} \text { tons }
\end{aligned}
$$

Stepwise approach:

$$
\begin{aligned}
& 330,000,000 \mathrm{mi}^{3} \times\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)^{3}=4.9 \times 10^{19} \mathrm{ft}^{3} \\
& 4.9 \times 10^{19} \mathrm{ft}^{3} \times\left(\frac{12 \mathrm{in} .}{1 \mathrm{ft}}\right)^{3}=8.4 \times 10^{22} \mathrm{in}^{3} \\
& 8.4 \times 10^{22} \mathrm{in.}^{3} \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)^{3}=1.4 \times 10^{24} \mathrm{~cm}^{3} \\
& 1.4 \times 10^{24} \mathrm{~cm}^{3} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \times \frac{1.03 \mathrm{~g}}{1 \mathrm{~mL}}=1.4 \times 10^{24} \mathrm{~g} \\
& 1.4 \times 10^{24} \mathrm{~g} \times \frac{3.5 \mathrm{~g} \mathrm{sodium} \mathrm{chloride}}{100.0 \mathrm{~g} \mathrm{sea} \text { water }}=4.9 \times 10^{22} \mathrm{~g} \mathrm{NaCl} \\
& 4.9 \times 10^{22} \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{lb}}{453.6 \mathrm{~g}}=1.1 \times 10^{20} \mathrm{lb} \\
& 1.1 \times 10^{20} \mathrm{lb} \times \frac{1 \text { ton }}{2000 \mathrm{lb}}=5.4 \times 10^{16} \mathrm{tons}
\end{aligned}
$$

The answers for the stepwise and conversion pathway approaches differ slightly due to a cumulative rounding error that is present in the stepwise approach.
73. (M)

$$
\begin{aligned}
\mathrm{V}_{\text {seawater }} & =1.00 \times 10^{5} \text { ton } \mathrm{Mg} \times \frac{2000 \mathrm{lb} \mathrm{Mg}}{1 \text { ton } \mathrm{Mg}} \times \frac{453.6 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{lb} \mathrm{Mg}} \times \frac{1000 \mathrm{~g} \text { seawater }}{1.4 \mathrm{~g} \mathrm{Mg}} \times \frac{0.001 \mathrm{~L}}{1.025 \mathrm{~g} \text { seawater }} \\
& \times \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}=6 \times 10^{7} \mathrm{~m}^{3} \text { seawater }
\end{aligned}
$$

74. (D) (a) dustfall $=\frac{10 \mathrm{ton}}{1 \mathrm{mi}^{2} \cdot 1 \mathrm{mo}} \times\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \times \frac{1 \mathrm{ft}}{12 \mathrm{in} .} \times \frac{39.37 \mathrm{in} .}{1 \mathrm{~m}}\right)^{2} \times \frac{2000 \mathrm{lb}}{1 \mathrm{ton}} \times \frac{454 \mathrm{~g}}{1 \mathrm{lb}} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}}$

$$
=\frac{3.5 \times 10^{3} \mathrm{mg}}{1 \mathrm{~m}^{2} \cdot 1 \mathrm{mo}} \times \frac{1 \mathrm{month}}{30 \mathrm{~d}} \times \frac{1 \mathrm{~d}}{24 \mathrm{~h}}=\frac{5 \mathrm{mg}}{1 \mathrm{~m}^{2} \cdot 1 \mathrm{~h}}
$$

(b) This problem is solved by the conversion factor method, starting with the volume that deposits on each square meter, 1 mm deep.

$$
\begin{aligned}
& \frac{\left(1.0 \mathrm{~mm} \times 1 \mathrm{~m}^{2}\right)}{1 \mathrm{~m}^{2}} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{2} \times \frac{2 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}} \times \frac{1 \mathrm{~m}^{2} \cdot \mathrm{~h}}{4.9 \mathrm{mg}} \\
& =4.1 \times 10^{5} \mathrm{~h}=5 \times 10^{1} \mathrm{y} \text { It would take about half a century to accumulate a depth of } 1 \mathrm{~mm} .
\end{aligned}
$$

77. (M) We will use the density of diatomaceous earth, and its mass in the cylinder, to find the volume occupied by the diatomaceous earth.
diatomaceous earth volume $=8.0 \mathrm{~g} \times \frac{1 \mathrm{~cm}^{3}}{2.2 \mathrm{~g}}=3.6 \mathrm{~cm}^{3}$
The added water volume will occupy the remaining volume in the graduated cylinder. water volume $=100.0 \mathrm{~mL}-3.6 \mathrm{~mL}=96.4 \mathrm{~mL}$
78. (M)

Water used (in $\mathrm{kg} /$ week) $=1.8 \times 10^{6}$ people $\times\left(\frac{750 \mathrm{~L}}{1 \text { day }}\right) \times\left(\frac{7 \text { day }}{1 \text { week }}\right) \times \frac{1 \mathrm{~kg}}{1 \mathrm{~L}}=9.45 \times 10^{9} \mathrm{~kg}$ water $/$ week Given: Sodium hypochlorite is NaClO

$$
\text { mass of } \begin{aligned}
\mathrm{NaClO} & =9.45 \times 10^{9} \mathrm{~kg} \text { water }\left(\frac{1 \mathrm{~kg} \text { chlorine }}{1 \times 10^{6} \mathrm{~kg} \text { water }}\right) \times\left(\frac{100 \mathrm{~kg} \mathrm{NaClO}}{47.62 \mathrm{~kg} \text { chlorine }}\right) \\
& =1.98 \times 10^{4} \mathrm{~kg} \text { sodium hypochlorite }
\end{aligned}
$$

82. (M) $\frac{1.77 \mathrm{lb}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~kg}}{2.2046 \mathrm{lb}}=0.803 \mathrm{~kg} \mathrm{~L}^{-1}$
$22,300 \mathrm{~kg}$ of fuel are required, hence:
$22,300 \mathrm{~kg}$ fuel $\times \frac{1 \mathrm{~L}}{0.803 \mathrm{~kg}}=2.78 \times 10^{4} \mathrm{~L}$ of fuel
(Note, the plane had 7682 L of fuel left in the tank.)
Hence, the volume of fuel that should have been added $=2.78 \times 10^{4} \mathrm{~L}-0.7682 \mathrm{~L}=2.01 \times 10^{4} \mathrm{~L}$
83. (M) First, calculate the mass of wine: $4.72 \mathrm{~kg}-1.70 \mathrm{~kg}=3.02 \mathrm{~kg}$

Then, calculate the mass of ethanol in the bottle:
3.02 kg wine $\times \frac{1000 \mathrm{~g} \text { wine }}{1 \mathrm{~kg} \text { wine }} \times \frac{11.5 \mathrm{~g} \text { ethanol }}{100 \mathrm{~g} \text { wine }}=347.3 \mathrm{~g}$ ethanol

Then, use the above amount to determine how much ethanol is in 250 mL of wine:
250.0 mL ethanol $\times \frac{1 \mathrm{~L} \text { ethanol }}{1000 \mathrm{~mL} \text { ethanol }} \times \frac{347.3 \mathrm{~g} \text { ethanol }}{3.00 \mathrm{~L} \text { bottle }}=28.9 \mathrm{~g}$ ethanol
88. (M) First, determine the total volume of tungsten:
vol $\mathrm{W}=\mathrm{m} / \mathrm{D}=\frac{0.0429 \mathrm{~g} \mathrm{~W}}{19.3 \mathrm{~g} / \mathrm{cm}^{3}} \times \frac{(10 \mathrm{~mm})^{3}}{1 \mathrm{~cm}^{3}}=2.22 \mathrm{~mm}^{3} \mathrm{~W}$
The wire can be viewed as a cylinder. Therefore:
vol cylinder $=\mathrm{A} \times \mathrm{h}=\pi(\mathrm{D} / 2)^{2} \times \mathrm{h}=\pi(\mathrm{D} / 2)^{2} \times(0.200 \mathrm{~m} \times 1000 \mathrm{~mm} / 1 \mathrm{~m})=2.22 \mathrm{~mm}^{3}$
Solving for D , we obtain: $\mathrm{D}=0.119 \mathrm{~mm}$
89. (M) First, determine the amount of alcohol that will cause a BAC of 0.10% :
mass of ethanol $=\frac{0.100 \mathrm{~g} \text { ethanol }}{100 \mathrm{~mL} \text { of blood }} \times 5400 \mathrm{~mL}$ blood $=5.4 \mathrm{~g}$ ethanol
This person's body metabolizes alcohol at a rate of $10.0 \mathrm{~g} / \mathrm{h}$. Therefore, in 3 hours, this person metabolizes 30.0 g of alcohol. For this individual to have a BAC of 0.10% after 3 hours, he must consume $30.0+5.4=35.4 \mathrm{~g}$ of ethanol.

Now, calculate how many glasses of wine are needed for a total intake of 35.4 g of ethanol:
35.4 g ethanol $\times \frac{100 \mathrm{~g} \text { wine }}{11.5 \mathrm{~g} \text { eth. }} \times \frac{1 \mathrm{~mL} \text { wine }}{1.01 \mathrm{~g} \text { wine }} \times \frac{1 \text { glass wine }}{145 \mathrm{~mL} \text { wine }}=2.1$ glasses of wine

