Complete each of the following problems.

1. Balance the reactions below using whole number coefficients. (4 pts.)

a.
$$_2C_8H_{18}(\ell) + _25_O_2(g) \rightarrow _16_CO_2(g) + _18_H_2O(\ell)$$

b.
$$_2\text{FeCl}_3(aq) + _3\text{CaS}(aq) \rightarrow _1\text{Fe}_2\text{S}_3(s) + _3\text{CaCl}_2(aq)$$

- 2. Theobromine is an organic compound that gives dark chocolate a somewhat bitter taste. The structure of theobromine is shown at the right.
 - a. If the molecular formula of the obromine is $C_7H_8N_4O_2$, what is the molar mass of the obromine? (3 pts.)

$$7(12.011) + 8(1.008) + 4(14.007) + 2(15.999) = 180.167$$

Thus, the molar mass is 180.167 g/mol

Given that you should use at least two decimal places for molar masses from the periodic table, your molar mass should have at least two decimal places.

b. Theobromine is also toxic to dogs at doses greater than 300 mg of theobromine per kg body weight. That means my 10.0 kg dog would experience toxic effects if she eats 3.0 grams of theobromine. How many moles are present in 3.0 grams of theobromine? (3 pts.)

3.0 g theobromine
$$\frac{1 \text{ mol theobromine}}{180.167 \text{ g theobromine}} = 0.01665 \text{ mol theobromine}$$

To determine the number of significant figures, we count the number of sig figs in the data used in the calculation. 3.0 g has 2 sig figs and 180.167 g/mol has 6 sig figs. Since we are multiplying, the number of sig figs in the result must be the smallest of 2 or 6. Therefore, our result should have 2 sig figs: **0.017 mol theobromine.**

To save some calculation time, you may round all atomic masses to two (2) decimal points.

1			all atomic masses to two (2) decimal points.														10
1A																	18
1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	8A 2 He 4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 -8B-	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132.905	56 Ba 137.327	57 *La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.025	89 †Ac 227.028	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
*Lanthanide series			58 Ce 140.115	59 Pr 140.908	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.925	66 Dy 162.50	67 Ho 164.930	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967	
[†] Actinide series				90 Th 232.038	91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Copyright © 2007 Pearson Prentice Hall, Inc.