Chapter 7 Homework Key

Items boxed in purple were graded out of two points each, with two points earned for a correct answer and one point earned for a reasonable, but incorrect, attempt. Four points were awarded for submission of a completed assignment.
$5,6,15,19,21,25,26,34,37,40,43,45,49$
5. The proton in acid-base chemistry is solvated by water. The proton in nuclear chemistry is a nucleon and is not solvated.
6. Hydrogen. No, only those that dissociate in water to form H^{+}ions are acids.
15. $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
19. (a) $\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCOO}^{-}$
(b) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}+\mathrm{OH}^{-}$
21. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
25. (a) phosphoric acid
(b) cesium hydroxide: base
(c) carbonic acid
26. (a) magnesium hydroxide: base (b) ammonia:base
(c) acetic acid
34. weak acid; $\mathrm{HOCN}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OCN}(\mathrm{aq})$
37. a is highest; b is lowest
40. (a) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
43. (a) acidic (b)neutral $\begin{array}{lll}\text { (c) acidic } & \text { (d) basic }\end{array}$
45. $\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
$\mathrm{pH}=-\log \left(1.0 \times 10^{-5}\right)$
$\mathrm{pH}=-(-5)$
$\mathrm{pH}=5$
49. $\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
$-\mathrm{pH}=\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
$10^{-\mathrm{pH}}=10^{\log \left(\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{D}\right)}$
$10^{-\mathrm{pH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$10^{-3}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$1.0 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

