Chapter 4 Homework Key

17, 23, 24, 28, 36, 40, 41, 48, 52, 55, 57, 58, 60, 64, 70, 78, 82
17. (a) S^{2-}
(b) Potassium ion
(c) Bromide ion
(d) F^{-}
(e) Calcium ion
(f) Fe^{3+}
23. a. Iron(II) chloride is $\mathrm{d} . \mathrm{FeCl}_{2}$
c. Silver fluoride is h. AgF
e. Iron(III) bromide is b . FeBr_{3}
g. Sodium oxide is $f . \mathrm{Na}_{2} \mathrm{O}$
24. (a) Lithium fluoride
(b) CaCl_{2}
(c) Magnesium sulfide
(d) AgI
(e) Copper(II) oxide
(f) $\mathrm{Cu}_{2} \mathrm{~S}$
28. (a) KOH
(b) Magnesium carbonate
(c) $\mathrm{Fe}(\mathrm{CN})_{3}$
(d) $\mathrm{FeC}_{2} \mathrm{O}_{4}$
(e) Copper(II) sulfate
(f) Sodium dichromate
: $\mathrm{F}: \ddot{\mathrm{N}}: \ddot{\mathrm{F}}:$
36. :- : Eight electrons around each atom
40.
(a) CS_{2}
(b) ClF_{3}
(c) Phosphorus pentafluoride
(d) Carbon tetraiodide
(e) $\mathrm{C}_{3} \mathrm{O}_{2}$
(f) Tetraphosphorus trisulfide
41. (a)
(b)

(c)

Each line/bond represents two electrons.
(d)

(e)

(f)

48. (a) Polar
(b) Polar $($ difference $=2.0)$
(c) Polar
52. a. ${ }^{\delta-} \mathrm{O}-\mathrm{H}^{\delta+}$
b. ${ }^{\delta+} \mathrm{C}-\mathrm{F}^{\delta-}$
c. $\mathrm{C}=\mathrm{C}$, it is not polar.
55. Difference in brackets:
f. $\mathrm{P}-\mathrm{Cl}(0.9)<$ b. $\mathrm{N}-\mathrm{F}(1.0)<$ e. $\mathrm{Si}-\mathrm{Cl}(1.2)<$ a. $\mathrm{H}-\mathrm{F}(1.9)<$
c. B-F $(2.0)<$ d. $\mathrm{Si}-\mathrm{F}(2.2)$
57. (a) SiH_{4} : tetrahedral
(b) $\mathrm{H}_{2} \mathrm{Se}$: bent (2 LPs)
(c) PH_{3} : trigonal pyramidal (1 LP)
(d) SiF_{4} : tetrahedral
(e) OF_{2} : bent (2 LPs)
(f) $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$: trigonal planar
58. (a) CHCl_{3} : tetrahedral
(b) BCl_{3} : trigonal planar (0 LPs)
(c) CF_{4} : tetrahedral
(d) SF_{2} : bent (2 LPs)
(e) NI_{3} : trigonal pyramidal (1 LP)
(f) $\mathrm{CCl}_{2} \mathrm{~F}_{2}$: tetrahedral
60. SF_{2} is polar, the polarity of the bonds do not cancel because the lone pairs on sulfur cause the molecular shape to be bent, not linear.

64. The lone pair on sulfur results in a bent geometry.

70. (a)

(b)

(c)

78. X: 7A, HX, $\mathrm{Na}^{+}: \ddot{\mathrm{X}}^{-} ; \quad \mathrm{Y}: 6 \mathrm{~A}, \mathrm{H}_{2} \mathrm{Y}, 2 \mathrm{Na}^{+}: \ddot{\mathrm{Y}}^{2-} ; \quad \mathrm{Z}: 5 \mathrm{~A}, \mathrm{H}_{3} \mathrm{Z}, 3 \mathrm{Na}^{+}: \ddot{\mathrm{Z}}^{3-}$
82. Na^{+}is smaller than Na because it has lost its outermost electron (no shell 3 electrons), and there are now 11 protons attracting 10 electrons. Cl^{-}is larger than Cl because it has gained an additional electron, and there are now 17 protons attracting 18 electrons.

