Classes of Electronic Transitions

I. Transitions involving σ, π, and non-bonded e^-

- Molecular orbital picture
 - Typically involve either delocalized electrons or electrons in unshared pairs.
- Chromophore
 - Different compounds have different MO diagrams

<table>
<thead>
<tr>
<th>Type</th>
<th>Region</th>
<th>λ (nm)</th>
<th>ε</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma \rightarrow \sigma^*$</td>
<td>vacuum UV</td>
<td>< 150 nm</td>
<td>weak (unlikely)</td>
<td>C-C ~135 nm, C-H ~125 nm</td>
</tr>
<tr>
<td>$n \rightarrow \sigma^*$</td>
<td>vacuum UV</td>
<td>150-250 nm</td>
<td>fairly weak</td>
<td>lone pairs, σ bonds</td>
</tr>
<tr>
<td></td>
<td>near UV</td>
<td></td>
<td></td>
<td>ethers, sulfides...</td>
</tr>
<tr>
<td>$n \rightarrow \pi^*$</td>
<td>near UV</td>
<td>180-700 nm</td>
<td>moderate</td>
<td>lone pairs, π bonds</td>
</tr>
<tr>
<td></td>
<td>visible</td>
<td></td>
<td>10-100 L/(mol cm)</td>
<td>carbonyls, nitroso,</td>
</tr>
<tr>
<td>$\pi \rightarrow \pi^*$</td>
<td>near UV</td>
<td>180-700 nm</td>
<td>strong</td>
<td>π systems</td>
</tr>
<tr>
<td></td>
<td>visible</td>
<td></td>
<td>> 1000 L/(mol cm)</td>
<td>multiple bonds, conjugation</td>
</tr>
</tbody>
</table>
Classes of Electronic Transitions: Influences on σ, π, n

- $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ are the most analytically useful
 - accessible wavelengths, strong absorbance

1. Auxochromes: saturated group with nonbonding electrons
 - Tends to stabilize π^*, decreasing $n \rightarrow \pi^*$ energy

2. Solvent Effects

3. Multiple Chromophores: If separated by > 2 single bonds, absorbance sums

4. Conjugation (aliphatic): Delocalized electrons
 - decreases (stabilizes) π^*, decreasing $\pi \rightarrow \pi^*$ energy

5. Aromatics: Three bands due to $\pi \rightarrow \pi^*$ transitions
 - Absorption band (highest energy)
 - E_2 Band (intermediate energy)
 - B Band (lowest energy)
 - Substituents cause band position to change depending on electron donating/withdrawing character.
 - Greater delocalization in aromatic system leads to stabilized π^*, and longer wavelength

Classes of Electronic Transitions

- **II. Transitions involving d and f electrons**
 - Transition metals (d), Lanthanides and Actinides (f)

- Transition Metals: electronic transitions between partially filled d-orbitals
 - Typically broad absorption bands
 - Energetics depend on:
 - identity of metal
 - complexation (shape and ligand identity)
 - Described by crystal-field theory and ligand-field theory
 - Complexation results in splitting (Δ) of d-orbital energies
Classes of Electronic Transitions

- Identity of ligand plays major role in Δ
 - Crystal Field (electrostatics) and Ligand Field (MO-like) theories
 - $I \prec Cl^{-} \prec H_{2}O \prec SCN^{-} \prec NH_{3} \prec CN^{-}$

- Lanthanides and Actinides: f-electrons
 - Narrow lines - shielded f-orbitals
 - little environmental (ligand) dependence

- Charge-Transfer Transitions
 - Absorption of photon induces transfer of electron from one component to another
 - Requires electron donor and electron acceptor
 - Lewis acid/base phenomenon
 - can be metal-ligand or organic
 - Typically strong absorbance (large ε)

 - Application of UV-VIS to non (or weakly) absorbing species
 - DO SOME CHEMISTRY!
 - Add complexing or color forming reagent
 - can also add stability
 - Need to be sure chemistry is understood to position equilibrium for maximum sensitivity
Experimental Observations

- Monitor electronic transitions of outermost (bonding/valence) e⁻
 - Not enough energy to affect core e⁻

- Bandshapes:
 - Influenced by concentration, intermolecular interaction, temperature…
 - Anything that affects the orbital energy
 - Resolution of spectrometer also plays a role

- Position: depends on “strength” of electronic interaction
 - UV – Strong
 - Vis - Less Strong
 - Impacted by auxochrome
 - Bathochromic (red) vs hypsochromic (blue)

Figure 16-9 Ultraviolet absorption spectra for 1,2,4,5-tetrasubstituted benzene in different environments: (a) in the vapor phase, (b) in benzene solution, and (c) in aqueous solution. (From T.F. Hayes, Chrom. Rev. 1969, 14, 199. With permission.)