$pH = -log[H^+], [H^+] = 10^{-pH}$	pH + pOH = 14	PV = nRT
$\frac{N_t}{N_0} = \left(\frac{1}{2}\right)^{t/t_{1/2}}$	$ln\left(\frac{N_t}{N_0}\right) = -0.693 \frac{t}{t_{1/2}}$	$\log\left(\frac{N_t}{N_0}\right) = -0.301 \frac{t}{t_{1/2}}$

JBA 2022 – Chemistry Exam 3

Name:______Score:_____/100 = _____/80

Μı	ultiple	e choice questions are wor	th tv	vo points	each.			
1.		ch of these classes of comp	ounds	s form m	ost of the r	nembranes for	your cells?	
	b. c.	carbohydrates lipids (or fats) amino acids nucleic acids.					Answer	_b
2.	What	t key role do carbohydrates	serv	e in the b	ody?			
	b. c.	They form cell walls They encode genetic information They are sources of energy They serve no role in the	У				Answer	_c
3.		no acids are compounds that bound is an amino acid? is:	ıt con	tain <u>botl</u>	amine and	d carboxylic ac	id groups. W	hich
	_	H OH H H H-C-C-C-C-N H H H H			H—C— c. H			
	b.	H OH O H—C—C—C 			H—C— d. H	NH ₂ O // -C -C OH	Answer	d
4.	If aci	ds are compounds that don	ate p	rotons (H	(⁺), how is	it that SO_x and	NO_x cause a	cid rain?
	b. с.	They react with hydrogen acids. There is not sufficient evi actually do cause acid rain. They react with water to fi	dence n. Form a	e to indic	ate that the	-	Answer	_c
	d.	They react with ammonia	to fo	rm acids.				
5.		compound CH ₃ NH ₂ reacts NH ₂ is acting as a(n)	with v	water to 1	Form CH ₃ N	NH ₃ ⁺ and OH ⁻ .	In this reacti	on,
		salt base		acid solvent			Answer	_b

6.	H ₃ U	is called the										
		hydroxide io hydrogen io				•	drate ion dronium io	on			Answer _	d
7.		e concentration?	on of	a dilute so	olutio	on o	f nitric aci	id (F	INC	O ₃) is 0.0001	10 M, what is	s the pH of
		14.0 7.0				4.0 5.0					Answer _	_c
8.		oH of a samp essing plant h										
		two times <i>l</i> one hundre concentration two times <i>s</i> one hundred concentration	d tim on. <i>malle</i> d time	es <i>larger</i> er than the	than	the er h	river hydi ydronium	roniu	ım i conc	on centration.	Answer_	b
9.	Uran	ium-238 deca	ays b	y emissio	n of	an a	lpha parti	cle.	The	other prod	uct of this de	ecay is
	a.	²³⁴ ₉₂ U	b.	²³⁴ ₉₁ Pa		c.	²³⁴ ₈₈ Ra		d.	²³⁴ Th	Answer _	d
10	One react	difference be ion	tweei	n a chemi	cal r	eact	ion and a	nucl	ear 1	reaction is t	hat in a nucl	ear
	b. c.	only small a only the val atoms retain atoms often	ence their	electrons r identity.	are i	nvo	lved.			d.	Answer _	d
11		r demo with d moved into			ask a	nd g	green wate	er on	Thu	ursday, the	primary reas	on the
	c.	The pressur outside the interpressur outside the interpressur outside the interpressure outside the interpretable outside	flask. e insi flask stion	de the fla	sk de	ecre s pro	ased comp	oarec	dio	the pressure		b

10.	Thorium-234	undergoes	beta	decay	as shown	below.	What i	s Q?

$$^{234}_{90}$$
Th $\rightarrow _{-1}^{0}$ e + Q

a.
$$^{234}_{91}$$
Pa

c.
$$^{233}_{90}$$
Th d. $^{234}_{89}$ Ac

d.
$$^{234}_{89}$$
Ac

Answer ___a___

11. After three half-lives, what fraction of the original radioactive isotope remains in a sample?

- a. 1/4
- b. 1/8
- c. 1/16
- d. none

Answer ___b___

12. The mass of a helium nucleus is slightly less than the sum of its parts (2 protons and 2 neutrons) because

- a. the mass of protons and neutrons are not precisely known.
- b. some of the mass is given to electrons.

Answer ___d___

- c. the mass of a proton is larger than the mass of a neutron.
- d. some of the mass is converted to binding energy.

13. Match the term with its definition. (12 points)

E pH	A. a concentration term expressed in moles per liter
H alpha particle	B. a compound that can behave both as an acid and as a base
A molarity	C. a solution with pH > 7
B amphiprotic	D. the force that holds the nucleons together in an atom's nucleus
J critical mass	E. $-\log[H^+]$
D binding energy	F. the substance in which a solute is dissolved
L unsaturated fat	G. building blocks of proteins
I primary structure	H. a helium nucleus emitted in nuclear reaction
C basic	I. the order of amino acids in a protein
G amino acid	J. the minimum amount of an isotope necessary to sustain a chain reaction.
K acidic	K. a solution with $[H^+] > 1 \times 10^{-7} M$
F solvent	L. a water insoluble compound with no carbon-carbon multiple bonds

- 14. Write reactions for the following: (2 points each)
 - a. The dissociation of nitric acid (HNO₃, a strong acid)

$$HNO_3 \rightarrow H^+ + NO_3^-$$

b. The dissociation of calcium hydroxide (Ca(OH)2, a strong base)

$$Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}$$

c. The reaction of nitric acid (HNO₃) with calcium hydroxide (Ca(OH)₂).

$$HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$$

15. Complete the following table: (10 points)

Compound	Molarity	рН	рОН	Acidic, Basic or Neutral?
H ₂ SO ₄	0.012 M	$H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$ So, $[H^+] = 2(0.012) =$ 0.024 M, pH = 1.62	12.38	Acidic
КОН	0.0035 M	11.54	$KOH \rightarrow K^{+} + OH^{-}$ $[OH^{-}] = 0.0035 M$ pOH = 2.46	Basic

16. Write the nuclear equation for the decay of Po-210 if it undergoes 2 consecutive alpha decay followed by a beta decay followed by another alpha decay? (10 points)

$$^{210}_{84}$$
Po $\rightarrow 3^{4}_{2}$ He + $^{0}_{-1}$ e + $^{198}_{79}$ Au

- 17. In a beaker, you mix 35.0 mL of 0.100 M HNO₃ and 30.0 mL of 0.200 M NaOH.
 - a. Write the balanced reaction that you would expect to occur. (2 points)

$$HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$$

b. When the reaction is complete, will the resulting solution be acidic, basic, or neutral? Explain your decision. (hint: figure out which reactant is in excess) (8 points)

We have

$$0.035 \text{ L HNO}_3 \quad \text{x} \quad 0.100 \quad \text{mol HNO}_3 = 0.0035 \quad \text{mol HNO}_3$$

and

$$0.030 \text{ L NaOH} \quad \text{x} \quad \underline{0.200 \text{ mol NaOH}} = 0.0060 \text{ mol NaOH}$$

The stoichiometry requires 1 mole HNO₃ for every mole of NaOH. Therefore, we need:

$$0.0035 \text{ mol HNO}_3$$
 x $1 \text{ mol NaOH} = 0.0035 \text{ mol NaOH}$
 1 mol HNO_3

Since we need 0.0035 mol NaOH and we only have 00060 mol, the HNO₃will run out and we will have some NaOH remaining. Since the base is left over, the solution will be **basic.**

18. In a carbon-14 dating experiment, a fossil was found to have 3.13% of its natural abundance of carbon-14 (in other words, if it originally would have contained 100 g ¹⁴C, it now only contains 3.13g ¹⁴C), If the half-life of ¹⁴C is 5730 years, how old is the fossil? (10 points)

$$\ln\left(\frac{N_t}{N_0}\right) = -0.693 \frac{t}{t_{1/2}}$$

$$\ln\left(\frac{3.13}{100}\right) = -0.693 \frac{t}{5730y}$$

$$-3.464 = -0.693 \frac{t}{5730y}$$

$$t = 5730y \frac{-3.464}{-0.693} = 28,600 \text{ years old}$$

19.	Hydrochloric acid (HCl) is classified as a strong acid, while acetic acid (CH ₃ COOH) is
	classified as a weak acid. Explain what these terms mean. If you could examine a solution
	of HCl and a separate solution of acetic acid on a molecular level, what would you expect to
	see in each? (10 points)

Strong acids dissociate completely, while weak acids do not. In a solution of HCl, we would expect to find only H⁺ and Cl⁻, but no "HCl".In a solution of CH₃COOH, we would expect to find H⁺, CH₃COO⁻, but also a significant amount of CH₃COOH. A diagram may be useful.

- 20. Nucleic acids are the building blocks of DNA.
 - a. Every nucleic acid in DNA has three components. What are they? (3 points)

A sugar, a phosphate group and a nitrogen containing base

b. Why types of intermolecular forces hold DNA strands together to form a double helix? (3 points)

Hydrogen bonding interactions

c. In DNA, adenine and thymine are complementary bases, as are cytosine and guanine. If a segment of a single strand of DNA has the sequence, -ATTCGTAA-, what would the complementary sequence be? (4 points)

Since A is complementary to T and C is complementary to G, the sequence would be: -TAAGCATT-