Chemi	stry 222			Name			
Spring	2021						80 Points
Exam .	3: Chapter	s 8-10					
D C	e 11	1 (()	1.41				

Do <u>five</u> of problems 1-6. Clearly mark the problems you do not want graded. (16 pts. ea.) You must show your work to receive credit for problems requiring math. Report your answers with the appropriate number of significant figures. You may ignore activities in all problems.

1. Find the pH of a solution prepared by dissolving all of the following compounds in water in one beaker and diluting to a volume of 0.500 L: 0.100 mol acetic acid ($pK_a = 4.76$), 0.100 mol sodium acetate, 0.040 mol HCl, and 0.060 mol NaOH.

We need to recognize that the strong acid and strong base will react until one is consumed:

	HC1	+ Na	$OH \rightarrow$	NaCl	+	H_2O
Start mol	0.040	0.0)60	0		0
End mol	0	0.0)20	0.040		0.040

Now, the excess strong acid will react:

•	HA	+	NaOH	\rightarrow	H_2O	+	NaA
Start mol	0.100		0.020		0		0.100
End mol	0.080		0		0.120		0.120

So, we now have a buffer with 0.090 mol acetic acid and 0.110 moles acetate:

 $pH = pK_a + log \underline{mol A^{-}}_{mol HA} = 4.76 + log \underline{0.120 mol}_{0.080 mol} = 4.94$

In the end, **pH** = **4.94**

- 2. You are asked to prepare 0.500 L of 0.200 M acetate buffer at pH 4.90 using only pure acetic acid (MW=60.05 g/mol, pKa=4.76), 3.00 M NaOH, and water.
 - a. How many grams of acetic acid will be needed to prepare the 0.500 L buffer? Note that the given concentration of acetate refers to the concentration of all acetate species in solution. (6 points)

Regardless of pH, the total concentration of acetate must be 0.200 M. We will start with a 0.200 M acetic acid solution and use NaOH to adjust pH. Therefore, we need to solution initially to be 0.200 M acetic acid.

 $\frac{0.200 \text{ mol HA}}{1 \text{ L}} \times 0.500 \text{ L} \times 60.05 \text{ g HA}}{1 \text{ mol HA}} = 6.005 = 6.01 \text{ g acetic acid}$

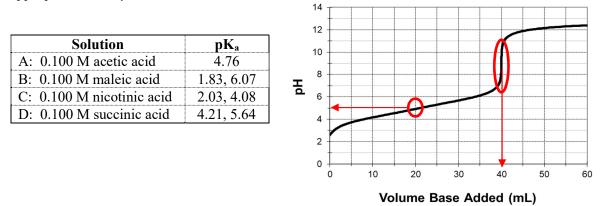
b. What volume of 3.00 M NaOH, must be added to the acetic acid to achieve a buffer with a pH of 4.90 at a final volume of 0.500 L? Ignore activity coefficients. (10 points)

We need to add enough NaOH to produce the appropriate ratio of A⁻:HA to produce pH 4.90. What ratio do we need?

$$pH = pK_{a} + \log \frac{\text{mol } A^{-}}{\text{mol } HA}$$

$$4.90 = 4.76 + \log \frac{\text{mol } A^{-}}{\text{mol } HA}$$

$$10^{(4.90-4.76)} = 1.38 = \frac{\text{mol } A^{-}}{\text{mol } HA}$$


So, $1.38 \pmod{\text{HA}} = \text{mol } \text{A}^-$ From mass balance, we know that mol HA + mol A⁻ = (0.500L)(0.200M) = 0.100 mol

Now some algebra to find how many mol A⁻ we need to produce:

 $\begin{array}{c} 1.38(\mathrm{mol}\ \mathrm{HA}) = \mathrm{mol}\ \mathrm{A}^{-} \mathrm{or}\ \mathrm{mol}\ \mathrm{HA} = \mathrm{mol}\ \mathrm{A}^{-}/1.38\\ \mathrm{mol}\ \mathrm{HA} + \mathrm{mol}\ \mathrm{A}^{-} = 0.100\\ (\mathrm{mol}\ \mathrm{A}^{-}/1.38) + \mathrm{mol}\ \mathrm{A}^{-} = 0.100\\ \mathrm{mol}\ \mathrm{A}^{-}((1/1.38) + 1) = 0.100\\ \mathrm{mol}\ \mathrm{A}^{-}((1/1.38) + 1) = 0.100\\ \mathrm{mol}\ \mathrm{A}^{-} = 0.0579_8\ \mathrm{mol}\end{array}$ To produce mol $\mathrm{A}^{-} = 0.0579_8\ \mathrm{mol}\ \mathrm{A}^{-}$ we need to add $0.0579_8\ \mathrm{mol}\ \mathrm{NaOH}$. That will require:

 $0.0579_8 \frac{\text{mol NaOH}}{\text{mol NaOH}} \times \frac{1000 \text{ mL}}{3.00 \frac{\text{mol NaOH}}{\text{mol NaOH}}} = 19.3 \text{ mL NaOH}$

3. I've asked you to go into the lab and help me prepare some unknowns for a new acid/base titration experiment we are considering. Unfortunately, I have neglected to label one solution and am nowhere to be found. To identify the solution, you construct the titration curve below by titrating 20.00 mL of the acid solution with standard 0.100 M NaOH. From the titration curve and the list of possible solution compositions below, identify the composition of the solution. Justify your reasoning by explaining how you were able to rule out each of the imposters and choose the appropriate identity.

Before examining the candidates, let's take a look at the titration curve and see what it can tell us. (1) we see a single clear equivalence point, indicative of either a monoprotic weak acid or a diprotic weak acid with Ka's that are "close". The pH midway to the sharp equivalence point is ~5, which would correspond to the pKa if the acid is monoprotic or to the average of the pKa values if the acid is diprotic. (2) We see the sharp equivalence point at 40 mL titrant added. We are titrating 20.00 mL of a 0.100 M solution of our acid with 0.100 M NaOH. If the acid were monoprotic, we would expect an equivalence point at 20.00 mL. The fact that the sharp equivalence point occurs at 40 mL indicates a diprotic acid. From this information, we can assess our candidates.

A: 0.100 M acetic acid. While the pKa does correspond to the pH half way to the equivalence point, if this were the identity, our equivalence point would occur at 20 mL, not 40 mL. So the acid cannot be acetic acid.

B: 0.100 M maleic acid. Maleic acid is diprotic, but the Ka values are far enough apart that we would expect two distinct equivalence points. Maleic cannot be the unknown acid.

C: 0.100 M nicotinic acid. Nicotinic acid is diprotic and the Ka values are close to one another, so the absence of two clear equivalence points makes sense. However, the average of the pKa values is 3.05, which does not correspond to the value at 20 mL in the titration curve. So nicotinic is not the unknown acid.

D: 0.100 M succinic acid. Succinic is diprotic, with the Ka values close to one another, so the absence of two clear equivalence points is reasonable. Also, the average of the pKa values is 4.92, which corresponds to the value at 20 mL in the titration curve. **Therefore, succinic is the most likely identity for the unknown acid.**

4. Calculate the pH of 6.6×10^{-7} M nitric acid. What fraction of the total H⁺ in this solution is from the nitric acid?

You **must** use charge (or mass) balance to solve this problem!

$$H_2O = H^+ + OH^-, K_w = [H^+][OH^-]$$

Charge Balance: $[H^+] = [NO_3^-] + [OH^-]$

$$[NO_{3}^{-7}] = 6.6 \times 10^{-7} M, [OH^{-7}] = K_{w}/[H^{+7}]$$
$$[H^{+7}] = 6.6 \times 10^{-7} M + \frac{K_{w}}{[H^{+7}]}$$
$$[H^{+7}]^{2} = 6.6 \times 10^{-7} M [H^{+7}] + K_{w}$$
$$0 = [H^{+7}]^{2} - 6.6 \times 10^{-7} M [H^{+7}] - K_{w}$$

Solve for [H⁺] using quadratic formula: [H⁺] = $6.7_5 \times 10^{-7}$ M, **pH** = 6.17

If total $[H^+] = 6.7_5 \times 10^{-7} M$, and HNO₃ contributes 6.6 x 10⁻⁷ M H⁺, then the fraction of H⁺ from nitric acid is:

$$\frac{6.6 \text{ x } 10^{-7} \text{M}}{6.75 \text{ x } 10^{-7} \text{M}} = 0.978 \text{ or } 98\%$$

5. What is the predominant species present in a solution of maleic acid that is buffered at pH 4.00? If the formal concentration of this solution is 0.125 M, what is the concentration of the predominant species at this pH? Maleic acid is HOOC(CH)₂COOH, but you can call this H₂A. $K_{a1} = 1.20 \times 10^{-2}$ and $K_{a2} = 5.37 \times 10^{-7}$

 $\begin{array}{l} pK_{a1} = -log(1.20x10^{-2}) = 1.92 \\ pK_{a2} = -log(5.37x10^{-7}) = 6.27 \end{array}$

At $pH = pK_{a1} = 1.92$, $[H_2A] = [HA^-]$, while at $pH = pK_{a2} = 6.27$, $[HA^-] = [A^{2-}]$. Therefore, at an intermediate pH (such as 4.00), HA⁻ will be the predominant species. We can use an α calculation to figure out its concentration.

$$[HA^{-}] = (\alpha_{HA})F$$

$$\alpha_{HA^{-}} = \frac{[H^{+}]K_{a1}}{[H^{+}]^{2} + [H^{+}]K_{a1} + K_{a1}K_{a2}}$$

$$\alpha_{HA^{-}} = \frac{10^{-4}(1.20x10^{-2})}{(10^{-4})^{2} + 10^{-4}(1.20x10^{-2}) + (1.20x10^{-2})(5.37x10^{-7})} = 0.986$$

 $[HA^{-}] = (\alpha_{HA})F = 0.986 \text{ x } 0.125\text{M} = 0.123 \text{ M}$

6. A weak diprotic acid, H₂A, has acid dissociation constants of $K_{a1} = 1.20 \times 10^{-2}$ and $K_{a2} = 5.37 \times 10^{-7}$. Calculate the pH and molar concentrations of H₂A, HA⁻, and A²⁻ at equilibrium for a 0.125F solution of NaHA.

First find the [H⁺]:

$$\left[\mathrm{H}^{+}\right] = \sqrt{\frac{\mathrm{K}_{a1}\mathrm{K}_{a2}\mathrm{F} + \mathrm{K}_{a1}\mathrm{K}_{w}}{\mathrm{K}_{a1} + \mathrm{F}}} = \sqrt{\frac{\left(1.20\mathrm{x}10^{-2}\right)\left(5.37\mathrm{x}10^{-7}\right)\left(0.125\mathrm{M}\right) + \left(1.20\mathrm{x}10^{-2}\right)\left(10^{-14}\right)}{\left(1.20\mathrm{x}10^{-2}\right) + 0.125\mathrm{M}}} = 7.67\mathrm{x}10^{-5}\mathrm{M}$$

 $pH = -log(7.67x10^{-5}) = 4.12$ (you could also take the average of the pK_as and get nearly the same result (pH 4.09))

Once we have [H⁺], we can find the concentrations by determining the fraction of each species present. $[X] = \alpha_x F$.

$$\alpha_{H_{2}A} = \frac{\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2} + \left[H^{+}\right]K_{a1} + K_{a1}K_{a2}}$$

In all cases, the denominator of the alpha expression is the same:

$$\begin{aligned} &d = [H^+]^2 + K_{a1}[H^+] + K_{a1}K_{a2} \\ &= (7.67 \times 10^{-5})^2 + (1.20 \times 10^{-2})(7.67 \times 10^{-5}) + (1.20 \times 10^{-2})(5.37 \times 10^{-7}) = 9.327 \times 10^{-7} \end{aligned}$$

For H₂A:

$$\alpha_{\text{H2A}} = \underline{[\text{H}^+]^2}_{\text{d}} = \underline{(7.67 \times 10^{-5})^2}_{9.327 \times 10^{-7}} = 0.00631$$

and $[H_2A] = \alpha_{H2A}F = 0.00631x0.125M = 7.88x10^{-4} M$

For HA⁻:

$$\alpha_{\text{HA-}} = \frac{K_{a1}[\text{H}^+]}{\text{d}} = \frac{(1.20 \times 10^{-2})(7.67 \times 10^{-5})}{9.327 \times 10^{-7}} = 0.987$$

and $[HA^-] = \alpha_{HA}F = 0.987x0.125M = 0.123 M$

For A^{2-} :

$$\alpha_{A2-} = \underline{K_{a1}K_{a2}}_{d} = \underline{(1.20 \times 10^{-2})(5.37 \times 10^{-7})}_{9.327 \times 10^{-7}} = 0.00691$$

and $[A^{2-}] = \alpha_{A2}F = 0.00691x0.125M = 8.64x10^{-4} M$

Possibly Useful Information

$\left[H^{+}\right] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}} \approx \sqrt{K_{a1}K_{a2}}$	$pH = \frac{1}{2} \left(pK_{a1} + pK_{a2} \right)$
$pH = pK_a + log \frac{[conjugate base]}{[weak acid]}$	$\alpha_{H_{2}A} = \frac{\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2} + \left[H^{+}\right]K_{a1} + K_{a1}K_{a2}}$
$\alpha_{A^{2^{-}}} = \frac{K_{a1}K_{a2}}{\left[H^{+}\right]^{2} + \left[H^{+}\right]K_{a1} + K_{a1}K_{a2}}$	$K_a K_b = K_w$
$K_w = 1.0 \text{ x } 10^{-14} = [H^+][OH^-]$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

IA 1A 1 H Hydrogen 1.008 3 Li Lithium 6.941	2 IIA 22A 4 Bee Beryflium 9.012				1	Period	ic Tab	ole of	the El	eme	nts 5	B Boron 10.811	14 IVA 4A 6 Carbon 12011	15 VA 5A 7 Nitrogen 14.007	16 VIA 6A 8 0 0xygen 15,999	17 VIIA 7A 9 Fluorine 18.998	VIIIA 8A 2 Heium Helium 10 Neon 20.180 18
Na	Mg	3 ШВ	4 IVB	5 VB		7 VIIB		vm —		11 IB	12 IIB	Al	Silicon	Phosphorus	Sulfur	Cl	Ar
22.990 19 K Potassium 39.098	24.305 20 Calcium 40.078	3B 21 Sc Scandium 44.956	4B 22 Ti Titanium 47.867	SB 23 V Vanadium 50.942		Mn I		obalt N		1B Cu 30 20 20 20 20 20 20 20 20 20 20 20 20 20		Gallium 69.723	28.086 32 Germanium 72.631	30.974 33 Arsenic 74.922	32.066 34 Seenium 78.971	35.453 35 Br Bromine 79.904	39.948 36 Krypton 83.798
37 Rb Rubidium 85.468	38 Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92,906			henium Rh	odium Pall	adium S	ilver (Cd	In Indium 114.818	50 Sn 118.711	51 Sb Antimony 121.760	52 Te Tellurium 127.6	53 I Iodine 126.904	54 Xeon 131.294
55 Cs Cesium 132.905	56 Ba Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	Tungsten	Re O	smium Iri	idium Pla	tinum (Joid 1	Hg	TI Thallium 204.383	B2 Pb Lead 207.2	83 Bi 8ismuth 208.980	84 Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordiur [261]	n 105 Dubnium [262]		Bh I		Mt Darm	tadtium Roen		Cn 📗	13 Nh Nihonium [286]	114 Fl Flerovium [289]	115 Mc Moscovium [289]	116 LV Livermorium [293]	117 TS Tennessine [294]	118 Og Oganesson [294]
	Lantha Ser Actir Ser	ies L 89 nide ies	Actinium Ti	Ce P Praseod 0.116 Praseod 140: Protact 231: Protact 231: Protact 231: Protact 231: Protact 231: Protact 231: Protact 231: Protact Prota	nium Neodymiu 144243 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		62 Samarium 150.36 94 Putonium 244.064	63 Europium 151.964 95 Amm 243.061	64 Gd Gadolinium 157.25 96 Curium 247.070	65 Tb Terbium 158.925 97 Bk Berkelium 247.070	66 Dy Dysprosiu 162,500 98 Cf Californiu 251,080	m 164.9	ium Ert 167 167 167 167	nium Th 1259 Th 16 101 N Mend Mend	46 vite 100	rbium 3.055 17 10 103 Lawr	.U etium 4967 LT encium 2621