Name	
November 6, 20	019
	NameNovember 6, 20

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Complete all of problems 1-5

1. You have prepared a buffer solution at pH = 4.00. If you take 100 mL of this solution and dilute it to 200 mL with distilled water, what will be the pH of the new solution? (4 points)

c. 4.00 d. Thursday	Answerc
s (4 points)	
c. PO_4^{3-}	Answer <u>b</u>
	c. 4.00 d. Thursday s (4 points) c. PO ₄ ³⁻ d. H ₃ O ⁺

- 3. The effect of adding 0.001 mol KOH to 1.00 L of a solution that is 0.10 M NH₃ and 0.10 M NH₄Cl is
 - to (4 points)
 - a. Raise the pH very slightly
 - b. Lower the pH very slightly
 - c. Raise the pH by several units
 - d. Lower the pH by several units

Answer <u>a</u>

4. Write one charge balance and one mass balance expression for a solution that is 0.10 M NaOH, 0.14 M KOH, 0.10 M NaCl and 0.12 M Ba(OH)₂. All of the solutes are strong electrolytes. (8 points)

Charge Balance: $[Na^+] + [K^+] + 2[Ba^{2+}] = [OH^-] + [Cl^-]$

Mass Balance: There are several possibilities. Here are a few: $[K^+] = 0.14 \text{ M}, [Na^+] = 0.20 \text{ M},$ $[Ba^{2+}] = 0.12 \text{ M}, [Cl^{-}] = 0.10 \text{ M}, [OH^{-}] = 0.48 \text{ M}$

- 5. Define three (3) of the following in one or two sentences each. (6 points)
 - a. amphiprotic: species that can behave as both an acid and a base
 - b. van't Hoff factor: a value that describes the number of particles formed when an electrolyte dissociates.
 - c. molality: concentration in terms of moles solute per kilogram solvent
 - d. diprotic acid: a compound capable of producing two moles of protons (or hydronium) per mole of compound.

Part I: Complete four (4) of problems 6-10. 10 points each.

1 L.

6. What is the pH of a solution that contains the strong electrolytes 0.100 M NaOH, 0.140 M KOH, 0.100 M NaCl and 0.115 M Ba(OH)₂?

We need the total concentration of hydroxide (or hydronium). NaCl does not contribute to either of these. From NaOH 0.100 mol NaOH x 1 mol OH = 0.100 mol OH = 0.100 M OH1 mol NaOH

From KOH
$$\underline{0.140 \text{ mol KOH}}$$
 x $\underline{1 \text{ mol OH}}$ = $\underline{0.140 \text{ mol OH}}$ = 0.140 M OH
From Ba(OH)₂ $\underline{0.115 \text{ mol Ba}(OH)_2}$ x $\underline{2 \text{ mol OH}}$ = $\underline{0.230 \text{ mol OH}}$ = 0.230 M OH

T

So, the total $[OH^-] = 0.100M + 0.140M + 0.230M = 0.470$ $pOH = -log[OH^{-}] = 0.327$ pH = 14 – pOH = **13.67**

7. Vitamin B_2 , riboflavin, is soluble in water. If 0.833 g of riboflavin is dissolved in 18.1 g H_2O , the resulting solution has a freezing point of -0.227°C. What is the molar mass of riboflavin?

molality =
$$\Delta t_{fp} = k_{fp}m$$

 $\underline{\Delta t_{fp}} = \frac{0.227^{\circ}C}{1.86^{\circ}Cm^{-1}} = \frac{0.1220 \text{ mol}}{\text{kg}}$

From the molality, we can find moles riboflavin (B₂) molality = $0.1220 \text{ mol } B_2 \times 0.0181 \text{ kg water} = 0.002209 \text{ mol } B_2$ kg water

Using moles B_2 and the mass of B_2 used, we get the molar mass: $0.833 \text{ g B}_2 = 377 \text{ g/mol}$ 0.002209 mol B₂

8. 50.00 mL of 0.0188 M HCl(aq) is mixed with 75.00 mL of 0.0112 M NaOH(aq). What is the pH of the final solution?

This is a strong acid/strong base reaction. The pH will be determined by what remains when the reaction is done:

We have 50.00 mL x 0.0188 mol/L HCl = 0.940 mmol HCl and75.00 mL x 0.0112 mol/L NaOH = 0.840 mmol NaOH

	HC1	+	NaOH	\rightarrow	NaCl	+	H_2O
Start	0.940 mmol		0.840 mmol		0		0
End	0.100 mmol		0 mmol		0.840 mmol		0.840 mmol

So, when the reaction is done, we will have 0.100 mmol of HCl in (50.00 + 75.00)mL of solution:

$$\frac{0.100 \text{ mmol HCl}}{125.00 \text{ mL}} \times \frac{1 \text{ mol H}^{+}}{1 \text{ mol HCl}} = \frac{8.00 \text{ x } 10^{-4} \text{ mol H}^{+}}{\text{L}} = 8.00 \text{ x } 10^{-4} \text{M H}^{+}$$

 $pH = -log[H^+] = -log(8.00 \times 10^{-4} M) = 3.10$

- 9. In the lab you need to prepare at least 100.0 mL of the following solutions. <u>Select one of the</u> <u>solutions below</u> and explain how you would prepare the solution, giving amounts (masses and volumes) of material needed.
 - a. 25% NaOH by mass in CH₃OH (density = 0.79 g/mL)
 - b. 0.10 mole fraction of $C_6H_{12}O_6$ (molar mass 180.16 g/mol) in water.
 - c. 200.0 ppm K⁺ in water, using KCl as your source of K⁺ (density = 1.00 g/mL)

There are several approaches to each of these. I'll show one each.

Part a: For 100 mL CH₃OH: 100 mL x 0.79 g/mL = 79 grams CH₃OH. How many grams NaOH for 25%?

$$\frac{25 \text{ g NaOH}}{100 \text{ g solution}} = \frac{x \text{ g NaOH}}{79 + x \text{ g solution}}$$

$$0.25(79+x) = x \rightarrow 19.75 + 0.25x = x \rightarrow 19.75 = 0.75x$$

$$x = 26.3 \text{ g NaOH needed for every 79 grams CH_3OH.}$$
Part b: For 100 mL water:

$$100 \text{ mL H}_2O = x - \frac{1 \text{ g H}_2O}{1 \text{ mL H}_2O} = 5.55 \text{ mol H}_2O$$

$$X_{C6H12O6} = 0.10 = \frac{\text{mol C}_6H_{12}O_6}{\text{mol C}_6H_{12}O_6 + \text{mol H}_2O} = \frac{x}{x + 5.55}$$

$$0.10(x + 5.55) = x \rightarrow 0.10x + 0.555 = x \rightarrow 0.555 = 0.90x$$

$$x = 0.616 \text{ mol C}_6H_{12}O_6$$

$$0.616 \text{ mol C}_6H_{12}O_6 = 111 \text{ g C}_6H_{12}O_6$$

So, 111 g C₆H₁₂O₆ for every 100 mL water

Part c

$$\frac{200.0 \text{ g K}^{+}}{10^{6} \text{ g solution}} \times \frac{1 \text{ g solution}}{1 \text{ mL solution}} \times 100 \text{ mL solution} = 0.0200 \text{ g K}^{+} \text{ needed}$$

$$0.0200 \text{ g K}^{+} \times \frac{1 \text{ mol K}^{+}}{39.098 \text{ g K}^{+}} \times \frac{1 \text{ mol KCl}}{1 \text{ mol K}^{+}} \times \frac{75.55 \text{ g KCl}}{1 \text{ mol KCl}} = 0.0386 \text{ g KCl needed}$$

$$0.0386 \text{ g KCl in 100 mL solution.}$$

- 10. A buffer solution is prepared by dissolving 0.150 moles of hydrofluoric acid ($K_a = 6.30 \times 10^{-4}$) and 0.200 moles of sodium fluoride in 0.500 L of solution.
 - a. What is the pH of this buffer? (4 points)

$$pK_{a} = 3.20$$

$$pH = 3.20 + \log \underbrace{0.200 \text{ mol NaF}}_{0.150 \text{ mol HF}} = 3.32$$

$$Answer _ 3.32$$

b. What will be the new pH after 25.00 mL of 2.087 M NaOH is added to this buffer solution? (6 points)

We have $0.02500L \ge 2.087 \text{ mol NaOH/L} = 0.05218 \text{ mol OH}^{-1}$ HF F-+ OH- \geq + H_2O Start 0.150 mol 0.0522 mol 0.200 ___ End 0.0978 0 0.2522 ___

This is still a buffer solution, so we can still use Henderson-Hasselbach as in part a. You could also set up an ICE table and get the same result.

$$pH = 3.20 + \log \frac{0.2522 \text{ mol NaF}}{0.0978 \text{ mol HF}} = 3.61$$
Answer_____3.61_____

Part II. Answer three (3) of problems 9-13. Clearly mark the problems you do not want graded. 12 points each.

- 11. Some ethylene glycol ($C_2H_6O_2$, molar mass 62.07 g/mol) is added to your car's cooling system along with 5.0 kg of water.
 - a. If the freezing point of this water-glycol solution is -15.0° C, how many grams of ethylene glycol must have been added?

 $\frac{\Delta t_{fp} = k_{fp}m}{\text{molality}} = \frac{\Delta t_{fp}}{k_{fp}} = \frac{15.0^{\circ}\text{C}}{1.86^{\circ}\text{C}m^{-1}} = \frac{8.065 \text{ mol}}{\text{kg}}$ $\frac{8.065 \text{ mol } \text{C}_{2}\text{H}_{6}\text{O}_{2}}{\text{kg water}} = \frac{5.0 \text{ kg water}}{1 \text{ mol } \text{C}_{2}\text{H}_{6}\text{O}_{2}} = 2503 \text{ g } \text{C}_{2}\text{H}_{6}\text{O}_{2}$

Answer_____2500 g C₂H₆O₂_____

b. What is the boiling point of the solution?

The solution molality is the same as in part a

$$\Delta t_{fp} = \underbrace{0.51^{\circ}C \text{ kg}}_{\text{mol}} \text{ x } \underbrace{\frac{8.065 \text{ mol}}{\text{ kg}}}_{\text{ kg}} = \underbrace{15.0^{\circ}C}_{1.86^{\circ}Cm^{-1}} = 4.11^{\circ}C$$

So the boiling point is $100.0^{\circ}C + 4.11^{\circ}C = 104.1^{\circ}C$

Answer____104.1°C_____

12. I've given you the task of preparing a pH 4.75 buffer. You've sought the help of a few of your classmates and have narrowed your choices down to the following list. *Each of these combinations should produce a buffer with pH=4.75*. Which student's suggestion would provide the best choice to make the highest capacity buffer? Justify your reasoning by identifying benefits of the "best" choice and the shortcomings of the two unfavorable choices.

Student	Student Buffer Composition							
Annie Yun	0.200M salicylic acid and 0.0032 M sodium salicylate	1.1 x 10 ⁻³						
Ty Trate	0.010 M acetic acid and 0.010 M sodium acetate	1.8 x 10 ⁻⁵						
Chris Talls	0.200 M acetic acid and 0.200 M sodium acetate	1.8 x 10 ⁻⁵						

For a buffer to have the best capacity, we would like the pK_a for the weak acid to be as close to the desired pH as possible, and we'd like a large concentration of both the weak acid and conjugate base to be present in the solution. The higher the concentration, the more strong acid or base can be absorbed without changing pH.

From the list above, Chris Talls recipe fits both requirements. Annie Yun suggests a combination which results in very dilute weak base because the pK_a is too far from the pH. Ty Trate has the ideal ratio of acid and conjugate base, but the dilute concentrations lead to poorer capacity that Chris' suggestion.

13. Sodium benzoate, used as a preservative in foods, is the conjugate base of benzoic acid. Calculate the pH of a solution prepared by dissolving 8.24 grams of sodium benzoate in 500.0 mL water. (The molar mass of sodium benzoate is 144.11 g/mol. The K_a for benzoic acid is 6.3 x 10⁻⁵)

In solution, sodium benzoate will dissociate to give Na^+ and A^- (benzoate anion). Therefore the solution will initially contain:

8.24 g NaA x
$$1 \mod \text{NaA}$$
 x $1 \mod \text{NaA}$ x $1 \mod \text{A}^{-}$ = 0.115 mol A⁻
144.11 g NaA 0.500 L $1 \mod \text{NaA}$ L

Benzoate ion is the conjugate base of benzoic acid (HA), therefore it will behave as a base:

$$A^- + H_2O \Rightarrow HA + OH^-$$

To treat this system, we need K_b for A⁻. $K_b = K_w/K_a = (1 \times 10^{-14})/(6.3 \times 10^{-5}) = 1.59 \times 10^{-10}$. Now we do the ICE thing:

	A-	+	H_2O	⇒	HA	+	OH
Ι	0.115 M				0		0
С	-X				+x		+x
E	0.115-x				Х		Х

Inserting into the K_b expression, we get:

$$K_b = [HA][OH^-] = x^2$$

[A] 0.115 -x

Here you can either use the quadratic forumula or make an assumption that $x \le 0.115$ since K_b is so small. Either approach works for this problem.

Solving for x, we get $x = [OH^-] = 4.28 \times 10^{-6} \text{ M}$, pOH = 5.37, pH = 14 - pOH = 8.63

Answer_____8.63_____

14. A solution is prepared by mixing the following materials and diluting to a total volume of 2.00 liters: <u>15.6 grams of sodium sulfide</u> (molar mass 78.05 g/mol), <u>150.0 mL of 0.500 M sodium hydroxide</u> (molar mass 40.00 g/mol) and <u>20.00 g of 38.4% by mass sodium chloride</u> (molar mass 58.44 g/mol). What is the molarity of sodium ion in the resulting solution? You may assume all of the solutes are strong electrolytes.

We need to find the total concentration of potassium ion, so we examine each source: From Na₂S 15.6 g Na₂S x $1 \mod Na_2S$ x $2 \mod Na^+$ = 0.399₇ mol Na⁺ From NaOH 0.1500 L x $0.500 \mod NaOH$ x $1 \mod Na^+$ = 0.0750 mol Na⁺ From NaCl 20.00 g mixture x $38.4 \gcd NaCl$ x 1 mol NaCl x $1 \mod Na^+$ = 0.131₄ mol Na⁺

So, our total moles $Na^+ = 0.399_7 + 0.0750 + 0.131_4 = 0.6061 \text{ mol } Na^+$

 $\frac{0.6061 \text{ mol Na}^+}{2.00 \text{ L}} = 0.303 \text{ M Na}^+$

Answer_____0.303 M Na⁺_____

Possibly Useful Information

$R = 8.31441 \text{ J mol}^{-1} \text{ K}^{-1}$	$^{\circ}C = K - 273.15$	$R = 0.0821 L atm mol^{-1} K^{-1}$
$\Delta t_{\rm fp} = k_{\rm fp} m$	$\Delta t_{\rm bp} = k_{\rm bp} m$	$\Pi = MRT = iMRT$
$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -RTlnK$	$\Delta G = \Delta G^{\circ} - RTlnQ$	$P_{soln} = X_{solvent}P^{o}_{solvent}$
$pH = pK_a + log\left(\frac{[conjugatebase]}{[weak acid]}\right)$	pH + pOH = 14	$K_a K_b = K_w = 1.00 \text{ x } 10^{-14}$
1 atm = 760 mm Hg	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	

Selected Constants

Solvent	Normal Boiling	\mathbf{k}_{bp}	Normal Freezing	\mathbf{k}_{fp}
Solvent	Point (°C)	(°C kg/mol)	Point (°C)	(°C kg/mol)
Water	100.0	0.51	0	1.86
Benzene	80.1	2.53	5.5	5.12
Ethyl Ether	34.5	2.02	-116.2	1.79
Chloroform	61.2	3.63	-63.5	4.70
cyclohexane	80.7	2.92	6.59	20.8
ethanol	78.4	1.22	-117.3	1.99

IA																	VIIIA
1	1					Dorio	dic Ta	hla i	of the	Flon	onte						8A 2
H	2					rene				Lien	ients	, 13	14	15	16	17	He
Hydrogen 1.008	IIA											ША	IVA	VA	VIA	VIIA	Helium 4 003
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
Lithium 6.941	Beryllium 9.012											Boron 10.811	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18,998	Neon 20.180
11	12											13	14	15	16	17	18
Na	Ma	3	4	5	6	7	8	9	10	11	12		Si	P	S	CI	Ar
Sodium 22,990	Magnesium 24.305	IIIB 2B	IVB	VB	VIB	VIIB		— vш —	$\overline{}$	IB 1P	IIB	Aluminum 26.982	Silicon 28.086	Phosphorus 30.974	Sulfur 32.066	Chlorine 35.453	Argon 39.948
19	20	21	22	23	24 2	25	26 2	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn 🛛	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.098	Calcium 40.078	Scandium 44.956	Titanium 47.867	Vanadium 50.942	Chromium 51,996	Manganese 54.938	Iron 55.845	Cobalt 58.933	Nickel 58.693	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.631	Arsenic 74.922	Selenium 78.971	Bromine 79.904	Krypton 83,798
37	38	39	40	41	42 4	13	44 4	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc 🛛	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.468	Strontium 87.62	Yttrium 88.906	Zirconium 91.224	Niobium 92.906	Molybdenum 95.95	Technetium 98.907	Ruthenium 101.07	Rhodium 102.906	Palladium 106.42	Silver 107.868	Cadmium 112.414	Indium 114.818	Tin 118.711	Antimony 121.760	Tellurium 127.6	Iodine 126.904	Xenon 131.294
55	56	57-71	72	73	74 7	'5	76 7	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132.905	Barium 137.328		Hafnium 178.49	Tantalum 180.948	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.085	Gold 196.967	Mercury 200.592	Thallium 204.383	Lead 207.2	Bismuth 208.980	Polonium [208.982]	Astatine 209.987	Radon 222.018
87	88	89-103	104	105	106 1	07	108 1	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
Francium 223.020	Radium 226.025		Rutherfordium [261]	Dubnium [262]	Seaborgium [266]	Bohrium [264]	Hassium [269]	Meitnerium [278]	Darmstadtium [281]	Roentgenium [280]	Coperniciu [285]	m Nihonium [286]	Flerovium [289]	Moscovium [289]	Livermorium [293]	Tennessine [294]	Oganesson [294]
	Lanth	57	58	59	60	61	62	63	64	65	-	67	68	69	70	71	
	Ser	ies	.a C	e ŀ	r No	d Pr	n Sn	n E	u G	id I	b	Dy I	10	tr I	m Y	b L	.u
		Lant 13	thanum Ce 8.905 14	0.116 Praseo 140	908 Neodym 144.24	ium Promet 13 144.9	hium Samari 113 150.3	um Euro 16 151	I.964 Gado	7.25 Te	i8.925	162.500 H	64.930 Ei	57.259 16	8.934 Ytte	3.055 Lut	etium 4.967
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	Actir	ide	λc T	「h P	′a∣U	N	ρ Ρι	A∣L	m C	m E	3k 📋	Cf	Es F	m N	1d N	10 I	.r
		Act 22	tinium The 7.028 23	2.038 Prota 2.038 231	tinium Uraniu .036 238.02	m Neptur 29 237.0	nium Plutoni 148 244.01	um Ame 64 243	ricium Cu 8.061 243	rium Bei 7.070 24	kelium C 7.070	251.080 Ein	steinium Fe [254] 25	rmium Meno 57.095 2	lelevium Nol 58.1 25	9.101 Lawr	encium 262]
																© 201	7 Todd Helmenstine sciencenotes.org