Name _____

CHEM 131 Quiz 3 – September 18, 2019

Complete the following problems. Write your final answers in the blanks provided. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

1. There are two problems with the Lewis structure for carbonate ion (CO_3^{2-}) shown below. Identify the two problems and show how to correct them. (5 points)

One problem with the structure is that it does not indicate that carbonate is an ion by putting the structure in brackets and showing the charge. The second problem is that the carbon does not have a filled octet. In order to satisfy the octet rule, a multiple bond must be made between the carbon and one of the oxygens. You should draw three resonance structures for $CO_3^{2^2}$.

2. Complete the table for <u>two (2)</u> of the species below: (12 points)

Species	Lewis Structure (indicate resonance if necessary)	Electron Pair Geometry	Molecular Geometry	Polar Molecule? (yes/no)
NH3	H H-N: H	tetrahedral	trigonal pyramidal (or just <i>pyramidal</i>)	yes
CIF3	$\begin{array}{c} :\ddot{F}:\\ \dot{F}-C1\\ \dot{F}:\\ :F: \end{array}$	trignonal bipyramidal	T-shaped	yes
SO ₂	$\ddot{\mathbf{Q}} = \ddot{\mathbf{S}} = \ddot{\mathbf{Q}} \iff \ddot{\mathbf{Q}} - \ddot{\mathbf{S}} = \ddot{\mathbf{Q}} \iff \ddot{\mathbf{Q}} = \ddot{\mathbf{S}} - \ddot{\mathbf{Q}}$ Note that experiments indicate that the first structure is less representative than the other two.	trigonal planar	bent	yes

- 3. Below are the Lewis structures for two compounds. For each compound, name the **molecular geometry** and provide a **three dimensional sketch** of the compound. Indicate approximate bond angles (8 points)
 - a. OCl₂

b. SF₄

SF₄ has trigonal bipyramidal electron pair geometry, which leads to <u>see-saw</u> <u>molecular geometry</u>. The presence of an unshared pair of electrons should make all of the bond angles less than the ideal angles of 90° for the axial atoms and 120° for the equatorial.

F F F F F

Bonus: Complete the table below: (1 pt each)

Compound Name	Formula					
sulfuric acid	H_2SO_4					
ammonium hydroxide	NH4OH					

IA 1A																	VIIIA 8A
1	1					Peri	odic 1	Table (of the	Elem	ents						2
H	2						-					13	14	15	16	17	He
Hydrogen	IIA											ША	IVA	VA	VIA	VIIA	Helium
1.008	2A	1										3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9 _	10
Li	Be											B	C	N	0	F	Ne
Lithium 6.941	Beryllium 9.012											Boron 10.811	Carbon 12.011	Nitrogen 14.007	Oxygen 15,999	Fluorine 18.998	Neon 20.180
11	12	ĺ										13	14	15	16	17	18
Na	Ma			-	6	7	•	•	10	11	12	ΔΙ	Si	D	° C	CI	Δr
Sodium	Magnesium	шв	IVB	VB	VIB	VIIB	°_	у́ш		IB	IIB	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.990	24.305	3B	4B	5B	6B	7B	<u> </u>	8	<u>}</u>	1B	2B	26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.090	38	30	47.007	30.942	42	34.550 A3	33.043	45	46	47	48	19.725	50	51	52	53	54
"Dh	"Cr	″ v	~~~	Nh	Ma	To		Dh	Dd	"Aa	L D	Tn	"Cn	Ch	²⁷ To	Т	"Vo
Rubidium	Strontium	Vitrium	Zirconium	Nichium	Mohdeoum	Technotium	Ruthanium	Phodium	Palladium	Ag	Cadmium	LII	311	JU	Tellurium	Indina	Xenon
85.468	87.62	88.906	91.224	92.906	95.95	98.907	101.07	102.906	106.42	107.868	112.414	114.818	118.711	121.760	127.6	126.904	131.294
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.905	137.328	00.103	178.49	180.948	183.84	186.207	190.23	192.217	195.085	196.967	200.592	204.383	207.2	208.980	[208.982]	209.987	222.018
8/ E	88 D-	89-103	104 D£		106 C	DL	108	109	110 D-	D	112 C	NIL		115 B.4 -	116	" T -	118
rr	Ra		RT	DD	S g	БП	ПS	Ινιτ	DS	Rg	Cn	INN	ГІ	IVIC	LV	IS	Ug
223.020	226.025		[261]	[262]	[266]	[264]	[269]	[278]	[281]	[280]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	Lanth	anide	.a C	Ce F	Pr N	ld P	m S	m E	uG	id T	b C)v∣⊦	lo 🛛 I	Er T	m Y	′b ∣ L	.u
	Ser	Lant	thanum Ce	rium Praseo	dymium Neod	ymium Prom	ethium Sam	arium Euro	opium Gado	olinium Ter	bium Dysp	orosium Hol	lmium Er	bium Th	ulium Ytte	rbium Lut	etium
		13	8.905 14	0.116 140	1.908 144	.243 14	1913 15	0.36 151	1.964 15	07	s.925 16	2.500 16	4.930 16	1.259 16	8.934 17	5.055 17	4.967
	Actin	nide 89	_ ⁹⁰ T	"L ⁹ r	92	I 93		⁹⁵				~£ ⁹⁹ 1					
	Ser	ies 🕨			d	ח נ	IP P	u A	mC	mE	OK C		:S F				
		Act 22	7.028 23	2.038 Prota 2.31	1.036 Ura 238	1.029 Nept	7.048 Plut 24	4.064 Ame	8.061 Cu	7.070 Ber 24	7.070 Calif	1.080 Einst	254] Fei 254] 25	7.095 Mend	58.1 Not	9.101 Lawr	262]
																© 201	17 Todd Helmenstine