CHEM 130		
Quiz 4 – September	14,	2018

Name _____

Complete the following problems. Write your final answers in the blanks provided. You must show your work to receive full credit. Show your answers to the correct number of significant figures with the correct units.

- 1. Malachite, a copper-containing mineral with the formula Cu₂(OH)₂CO₃ can be used to prepare copper metal. Answer the following regarding malachite.
 - a. What is the molar mass of malachite? (2 pts.)

From the formula, 1 mol malachite consists of 2 mol Cu, 5 mol O, 2 mol H and 1 mol C, so the molar mass is: [2(63.546) + 5(15.999) + 2(1.008) + 1(12.011)]g/mol = 221.114 g/mol

b. Determine the mass percent of oxygen in malachite. Cu₂(OH)₂CO₃? (3 pts.)

Molar mass of malachite is 221.116 g/mol and each mole of malachite contains 5 moles of oxygen, or $5 \times 15.9994 = 79.997 = 79.99$

$$\frac{79.995 \text{ g O}}{221.114 \text{ g malachite}}$$
 x 100% = **36.18** % **O**

c. If you wanted to prepare 10.0 grams of copper from malachite, what mass of the mineral would be required? (3 points)

Each mole of malachite contains 2 mol Cu, so 221.114 g malachite contains 2(63.546)= 127.092 g Cu

Answer___17.4 g malachite ___

2. Complete the table of ions below: (8 points)

Name	Formula (including charge)
hydroxide ion	OH-
ammonium ion	NH ₄ ⁺
magnesium ion	Mg ²⁺
carbonate ion	CO ₃ ² -

Name	Formula (including charge)
acetate ion	$C_2H_3O_2^-$
perchlorate ion	ClO ₄ -
sulfur anion (aka sulfide)	S ³⁻
cyanide ion	CN ⁻

3. Fructose is a simple sugar that is found in many plants as a component of sucrose. Excessive consumption of fructose has been linked to insulin dependence, type 2 diabetes, and cardiovascular disease. If fructose has a percent composition of 40.00% C, 6.71% H and 53.28% O and a molar mass of 180.16 g/mol, what are the empirical and molecular formulas of fructose? (9 pts.)

There are at least two approaches to this problem. I'll show you two, either approach is fine.

Approach 1:

Let's assume we have 100 g of fructose. Then we will have 40.00g C, 6.71g H and 52.28g O. How many moles of each?

$$40.00 \frac{\text{g C}}{\text{g C}} \times \frac{1 \text{ mol C}}{12.011 \frac{\text{g C}}{\text{g C}}} = 3.33 \text{ mol C}$$
 $6.71 \frac{\text{g H}}{\text{g H}} \times \frac{1 \text{ mol H}}{1.008 \frac{\text{g H}}{\text{g H}}} = 6.66 \text{ mol H}$

Similarly, we find we have 3.33 mol O.

Therefore, our empirical formula is $C_{3.33}H_{6.66}O_{3.33}$, or $C_1H_2O_1$. If this were also the molecular formula, the formula weight would be equal to the molecular mass. For the empirical formula, the formula weight is 30.026 g/mol, which is one sixth (180.16/30.026 = 6.00) of the molecular mass, therefore, the molecular formula must be $C_6H_{12}O_6$.

Approach 2:

We know that one mole of fructose has a mass of 180.16 grams and we know the percent composition of fructose, so we can calculate how many moles of each atom must be present in one mole of fructose.

$$\frac{40.00 \text{ g C}}{100 \text{ g fructose}} \times \frac{180.16 \text{ g fructose}}{1 \text{ mol fructose}} \times \frac{1 \text{ mol C}}{12.011 \text{ g C}} = \frac{6.00 \text{ mol C}}{\text{mol fructose}}$$

$$\frac{6.71 \text{ g H}}{100 \text{ g fructose}} \times \frac{180.16 \text{ g fructose}}{1 \text{ mol fructose}} \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = \frac{12.00 \text{ mol H}}{\text{mol fructose}}$$

$$\frac{53.28 \text{ g O}}{100 \text{ g fructose}} \times \frac{180.16 \text{ g fructose}}{1 \text{ mol fructose}} \times \frac{1 \text{ mol O}}{15.999 \text{ g O}} = \frac{6.00 \text{ mol O}}{\text{mol fructose}}$$

Therefore, our molecular formula must be $C_6H_{12}O_6$ and the empirical formula is CH_2O .

Answer:	Empirical For	rmula	CH_2O	Molecular	Formula	$_{\rm C_6H_{12}C}$) ₆
---------	---------------	-------	---------	-----------	---------	---------------------	----------------

IA 1A 1 H Hydrogen 1.008 3 Li Lithium 6.941	2 IIA 2A 4 Be Beryllium 9.012					Peri	odic 1	able (of the	Elem	nents	13 IIIA 3A 5 B Boron 10.811	14 IVA 4A 6 Carbon 12.011	15 VA 5A 7 Nitrogen 14.007	16 VIA 6A 8 Oxygen 15,999	17 VIIA 7A 9 Fluorine 18.998	VIIIA 8A 2 Helium 4.003 10 Ne Neon 20.180
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	¹⁴ Si	15 P	16 S	17 CI	Ar
Sodium	Magnesium	IIIB	IVB	VB	VIB	VIIB	•	— vIII —		IB	ΠВ	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.990	24.305	3B	4B	5B 23	6B	7B	26	27	28	1B 29	2B	26.982	28.086	30.974	32.066 34	35.453 35	39.948 36
¹⁹		21	— •		24								_	33 A a			
N	Ca	Sc	II	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.098	Calcium 40.078	Scandium 44.956	Titanium 47.867	Vanadium 50.942	Chromium 51.996	Manganese 54.938	Iron 55.845	Cobalt 58.933	Nickel 58.693	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.631	Arsenic 74.922	Selenium 78.971	Bromine 79.904	Krypton 83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85.468	Strontium 87.62	Yttrium 88.906	Zirconium 91.224	Niobium 92.906	Molybdenum 95.95	Technetium 98.907	Ruthenium 101.07	Rhodium 102.906	Palladium 106.42	Silver 107.868	Cadmium 112.414	Indium 114.818	Tin 118.711	Antimony 121.760	Tellurium 127.6	Iodine 126.904	Xenon 131.294
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.905	137.328		178.49	180.948	183.84	186.207	190.23	192.217	195.085	196.967	200.592	204.383	207.2	208.980	[208.982]	209.987	222.018
87 _	88	89-103	104	105	106	107	108	109	110	111_	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg Seaborgium	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
Francium 223.020	Radium 226.025		Rutherfordium [261]	Dubnium [262]	Seaborgium [266]	Bohrium [264]	Hassium [269]	Meitnerium [278]	Darmstadtium [281]	Roentgenium [280]	Copernicium [285]	Nihonium [286]	Flerovium [289]	Moscovium [289]	Livermorium [293]	Tennessine [294]	Oganesson [294]

Lanthanide Series	La La Lanthanum 138.905	Ce Cerium 140.116	Praseodymium 140.908	Neodymium 144.243	Promethium 144.913	Sm Samarium 150.36	Eu Europium 151.964	Gd Gadolinium 157.25	Tb Terbium 158.925	Dy Dysprosium 162.500	HO Holmium 164.930	Er Erbium 167.259	Tm Thulium 168,934	70 Yb Ytterbium 173.055	Lu Lutetium 174.967
Actinide Series	Ac Actinium 227.028	Th Thorium 232.038	Protactinium 231.036	92 U Uranium 238.029	Np Neptunium 237.048	Pu Plutonium 244.064	95 Am Americium 243.061	96 Cm Curium 247.070	97 Bk Berkelium 247.070	98 Cf Californium 251.080	ES Einsteinium [254]	Fermium 257.095	Md Mendelevium 258.1	No Nobelium 259.101	Lawrencium [262]
															© 2017 Todd Helr sciencer

© 2017 Todd Helmenstine sciencenotes.org