Chem 130	Name				
Exam 1, Ch 1-4.2	September 21, 2018				
100 Points					

Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant figures. Be concise in your answers to discussion questions.

Part 0: Warmup. 4 points each

- 1. Which of the following aspects of Dalton's atomic theory remains unchanged in our current understanding:
 - a. Atoms are indivisible.
 - b. All atoms of a particular element are identical.
 - c. Compounds are the result of a combination of two or more Answer _____ different kinds of atoms in fixed ratios.
 - d. None of the above.
- 2. Which of the elements below DOES NOT exist naturally as a diatomic molecule?
 - a. hydrogen c. nitrogen Answer _____ b. helium d. chlorine
- 3. An atom of sodium contains 11 protons, 11 electrons and 12 neutrons. Adding the masses of all of the protons, neutrons and electrons in a sodium atom will produce a value that is
 - a. equal to the true mass of a sodium atom.
 - b. greater than to the true mass of a sodium atom.
 - c. less than to the true mass of a sodium atom.
 - d. eleven times the true mass of a sodium atom.

Part I: Complete all of problems 4-10

4. Gallium is solid at 20°C. There are 1.16×10^{21} atoms in 134 mg of gallium at this temperature. Above 30°C, gallium melts (it melts in your hand!). How many atoms are there in 134 mg of gallium at 40°C? Briefly justify your answer. (4 points)

5. When it ionizes, does aluminum tend to form anions or cations? What is the charge on the ion? Briefly justify your answer. (4 points)

Answer _____

6. Complete the following table. (12 points)

Symbol		⁵⁶ Fe ³⁺	
# of protons	34		48
# of neutrons	45		64
# of electrons			48
Charge	-2		
Name			

7. Name the following compounds or provide the correct formula for the given names. (16 points)

a.	$Mo(NO_3)_4$	
b.	B ₂ Br ₄	
c.	(NH ₄) ₂ S	
d.	Na ₂ CO ₃ •10H ₂ O	
e.	xenon hexafluoride	
f.	magnesium perchlorate	
g.	chromium (VI) cyanide	
h.	strontium hydroxide	

8. The atomic mass of fluorine is 18.998 amu and all fluorine atoms in a naturally occurring sample of fluorine have this mass. The atomic mass of chlorine is 35.453 amu, but no chlorine atoms in a naturally occurring sample of chlorine have this mass. Explain this observation. (8 points)

- 9. Write balanced reactions, specifying the state for all reactants and products. (8 points)
 - a. ____Al(s) + ____KOH(aq) + ____H_2O(l) \rightarrow ___KAl(OH)₄(s) + ____H_2(g) (2 points)

b.
$$BCl_3(l) + H_2(g) \rightarrow B(s) + HCl(g)$$
 (2 points)

c. Aqueous potassium carbonate reacts with aqueous iron (III) nitrate to produce aqueous potassium nitrate and solid iron (III) carbonate. (4 points)

10. A brand new penny is 19.05 mm in diameter and 1.52 mm thick and is 97.5% zinc and 2.5% copper by mass. Assuming the penny has the same density as zinc (7.13 g/cm³), how many zinc atoms are in a new penny? You may assume the penny is a cylinder with a volume of π r²h, where π = 3.14159, r is the radius and h is the thickness.(8 points)

Answer_____

Part II. Answer three (3) of problems 11-14. Clearly mark the problem you do not want graded. 10 points each.

11. Glucose, C₆H₁₂O₆, is used as an energy source by the human body. The overall reaction in the body is described by the *unbalanced* equation below. If 55.5 grams of glucose is converted to CO₂, what mass of oxygen gas is required? What mass of water is produced?

 $C_6H_{12}O_6\left(s\right) + \quad O_2(g) \rightarrow \quad CO_2(g) + \quad H_2O\left(l\right)$

Answers___

12. There are two isotopes of boron, ¹⁰B (atomic mass 10.01294 amu) and ¹¹B (atomic mass 11.00931 amu). What are the percent abundances of each of the two isotopes?

Answer_

13. Isobutylene contains only carbon and hydrogen and is an important industrial chemical used in the production of a variety of products, ranging from antioxidants to polymers. Combustion of 1.00 grams of isobutylene results in the production of 3.14 grams of carbon dioxide and 1.28 grams of water. If the molar mass of isobutylene is 56.106 g/mol, what is its molecular formula?

Answer_____

14. A compound that contains only potassium, chromium and oxygen was analyzed. If was found that the compound contained 26.58% potassium and 35.45% chromium by mass. What is the formula for this compound?

Answer_____

Possibly Useful Information

% by mass = $\frac{\text{g component}}{100 \text{ g sample}}$			d = m/v			$N_A = 6.022 \text{ x } 10^{23}$						
	[†] Ac	*Lai	87 Fr (223)	55 Cs 132.905	37 Rb 85.4678	22,9898 19 K 39,0983	Na	3 Li 6.941	1A 1 H 1.00794	Ъ		
	tinide series	nthanid	nthanid	nthanid	88 Ra 226.025	56 Ba 137.327	38 Sr 87.62	24.3050 20 Ca 40.078	9Mg	4 Be 9.01218	2 2A	
		e series	89 [†] Ac 227.028	57 *La 138.906	39 Y 88.9059	21 Sc 44.9559	лг Л	ა		aTo		
			104 Rf (261)	72 Hf 178.49	40 Zr 91.224	122 11: 47.88	4R	2		sav II atc		
	90 Th 232.038	58 Ce 140.115	105 Db (262)	73 Ta 180.948	41 Nb 92.9064	23 V 50.9415	л Л	л		e soi omic		
0	91 Pa 231.036	59 Pr 140.908	106 Sg (266)	74 W 183.84	42 Mo 95.94	24 Cr 51.9961	6R O	n		me c mas		
opyrigh	92 U 238.029	60 Nd 144.24	107 Bh (264)	75 Re 186.207	43 Tc (98)	25 Mn 54.9381	7R	1		alcu ses		
nt © 20	93 Np 237.048	61 Pm (145)	108 Hs (277)	76 Os 190.23	44 Ru 101.07	26 Fe 55.847) •	0		latio to tw		
07 Pea	94 Pu (244)	62 Sm 150.36	109 Mt (268)	77 Ir 192.22	45 Rh 102.906	27 Co 58.9332	- 8R -	D		n tim '0 (2)		
rson Pr	95 Am (243)	63 Eu 151.965	110 Ds (271)	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693	5	10		ie, yc) dec		
entice I	96 Cm (247)	64 Gd 157.25	1111 Rg (272)	79 Au 196.967	47 Ag 107.868	29 Cu 63.546	1R	<u>-</u> -		bu m simal		
Hall, Inc	97 Bk (247)	65 Tb 158.925		80 Hg 200.59	48 Cd 112.411	20 20 2n 65.39	2R	1 0		ay ro		
ò	98 Cf (251)	66 Dy 162.50		81 T] 204.383	49 In 114.818	31 Ga 69.723	AI	5 B 10.811	13 3A	ound nts.		
	99 Es (252)	67 Ho 164.930		82 Pb 207.2	50 Sn 118.710	28.0855 32 Ge 72.61	Si	6 C 12.011	14 4A			
	100 Fm (257)	68 Er 167.26		83 Bi 208.980	51 Sb 121.757	30.9738 33 As 74.9216	P 20 0729	7 N 14.0067	15 5A			
	101 Md (258)	69 Tm 168.934		84 Po (209)	52 Te 127.60	32.066 34 Se 78.96	S	8 O 15.9994 16	16 6A			
	102 No (259)	70 Yb 173.04		85 At (210)	53 I 126.904	35.452/ 35 Br 79.904		9 F 18.9984	17 7A			
	103 Lr (262)	71 Lu 174.967		86 Rn (222)	54 Xe 131.29	39.948 36 Kr 83.80	Ar	10 Ne 20.1797 18	8A 2 He 4.00260	18		