Problem Set 1 -- Stoichiometry and Concentration Review

Complete all problems on separate paper. Show all work for credit. Correct use of significant figures is required for full credit.

- 1. <u>Describe</u> how to prepare 2.00 L of a solution that has a potassium concentration of 0.0100 M starting with:
 - a. solid potassium sulfate
 - b. 0.200 M potassium sulfate solution.
- 2. Ammonia can be generated by heating together the solids $Ca(OH)_2$ and NH_4Cl . $CaCl_2$ and water are also formed. How many grams of NH_3 will form if 33.0 grams each of NH_4Cl and $Ca(OH)_2$ are heated? (molar masses (g/mol): $NH_4Cl = 53.4912$, $NH_3 = 17.03056$, $Ca(OH)_2 = 74.093$, $CaCl_2 = 110.983$, water = 18.0153)
- 3. 22.5 grams of magnesium nitrate, 23.0 mL of 1.20 M nitric acid and 14.9 grams of aluminum nitrate are placed in a 500.0 mL volumetric flask, dissolved and diluted to a total volume of 500.0 mL. What is the nitrate concentration, in moles per liter, in the resulting solution?
- 4. You dissolve 2.83 g of a copper-containing mixture in water in a 100.0 mL volumetric flask and dilute it to the mark to prepare solution A. You then pipet 5.00 mL of solution A into a 25.00 mL volumetric flask and dilute it to the mark to make solution B. Finally, you pipet 1.00 mL of solution B into a 25.00 mL flask and dilute it to the mark to make solution C. You then determine the copper concentration in solution C to be 6.62 x 10⁻⁴M. What is the percent copper by mass in your original solid mixture?
- 5. In order for your car battery to function properly, the sulfuric acid in the battery must be between 4.8 and 5.3 M H_2SO_4 . A 5.00 mL sample of acid from a battery requires 49.74 mL of 0.935 M NaOH to be completely neutralized in a titration. Does the concentration of this battery acid fall within the desired range? Justify your answer with a calculation.