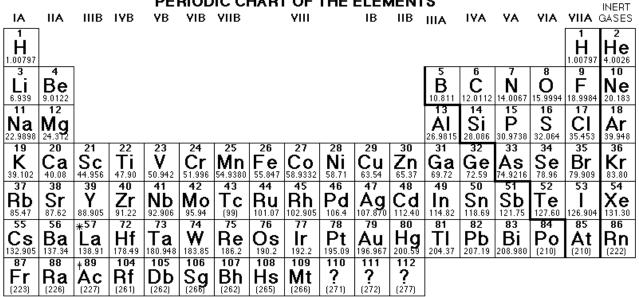

Cŀ	EM 322 Name	
Ex	Spring 2013	
	mplete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO CEIVE CREDIT.	
W	rm-up (2 points each).	
1.	The utilizes a series of heated filaments in its detection mechanism.	
2.	In a small fiber is inserted into the sample container to allow analyte to adsorb to its surface. The fiber can then be introduced into a GC for desorptio and analysis.	n
3.	In APCI, nebulized LC eluent passes through ato product solvent ions that ultimately lead to analyte ions.	е
4.	Capillary electrochromatography, aggregates of surfactants called for a pseudo stationary phase to allow partitioning of analytes.	'n
5.	The is an equilibrium constant that describes the tendency for a solute to exist in the stationary phase relative to the mobile phase during a chromatographic separation.	
	mplete <u>six</u> of the following. Be clear and concise. Clearly indicate which problem is not graded. (15 points each)	tc
6.	Selection of a detector for separations often involves a tradeoff between universality (or selectivity) and sensitivity. Briefly describe why this is so, using examples of specific gas chromatography detectors to illustrate your point.	

7.	Briefly describe the mechanism of separation in capillary zone electrophoresis. What parameters can be changed to optimize separation conditions in CZE?
8.	Mass spectrometry and evaporative light scattering have emerged as powerful detection schemes for HPLC, yet UV detection is still the most common mode for LC. For <u>either MS or ELSD</u> , describe the benefits of employing the detection scheme and how these benefits are realized. Given these benefits, why is UV detection still the most popular?

For problems 11 and 12, consider the chromatogram below that was obtained for a reverse-phase HPLC separation on a 25 cm column, using UV absorbance detection. Unretained compounds elute in 0.15 minutes.

- 11. Complete the following.
 - a. Calculate the number of theoretical plates for component B.
 - b. Calculate the selectivity factor of compound D over compound C.
 - c. Calculate the resolution of compounds C and B.
 - d. Which compound is the most polar? Justify your choice.



12. Your boss looks at the chromatogram and makes the following statement: "Well, it is clear to me that compound D is present at about 2 times the concentration of compound A and that compound B is methamphetamine since it elutes at 5.39 minutes under these conditions." Discuss the validity of this statement.

Possibly Useful Information

$A = log(P_0/P) = \varepsilon bc$	$\pi = 3.14159$					
$k'_A = K_A \frac{V_S}{V_M} = \frac{t_R - t_M}{t_M}$	$\alpha = \frac{K_A}{K_B} = \frac{k_A'}{k_B'}$					
N = L/H	$H = \frac{\sigma^2}{L} = L \left(\frac{W}{4t_R}\right)^2$					
$N = \left(\frac{4t_R}{W}\right)^2 = \left(\frac{2.35t_R}{W_{1/2}}\right)^2$	$H = A + \frac{B}{u} + Cu = A + \frac{B}{u} + (C_s + C_m)u$					
$R_{S} = \frac{\Delta Z}{W_{A}/2 + W_{B}/2} = \frac{2\Delta Z}{W_{A} + W_{B}}$	$R_{s} = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{k_{B}^{'}}{1 + k_{B}^{'}} \right)$					
$V = (\mu_e + \mu_{eo})E = (\mu_e + \mu_{eo})V/L$	$N = \frac{\left(\mu_{e} + \mu_{eo}\right)V}{2D}$					

PERIODIC CHART OF THE ELEMENTS

Numbers in parenthesis are mass numbers of most stable or most common isotope.

Lanthanido Sorioc

Atomic weights corrected to conform to the 1963 values of the Commission on Atomic Weights.

The group designations used here are the former Chemical Abstract Service numbers.

* Earlianting Correct														
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Cel	Pr	Nd	Ρm	Sm	FII	Gd	Th	Dv	Hο	Fr	Tm	Yh	1 11
	140.12	140.907	144.24	(147)	150.35	151.96	157.25	158.924	162.50	164.930	167.26	168.934	173.04	174.97

† Actinide Series 90 91 94 96 100 101 102 103 Fm Md No **Np** Th∣Pa Pu Am Cm Bk Es 232.038 (231) 238.03 (242)(243) (247) (253)