Beer - Lambert Law

- **Fundamental Law of Spectrophotometry**

 \[T = \frac{P}{P_0} = \frac{S}{B} \]

 \[A = -\log T \]

 \[A = -\log \frac{P}{P_0} = \varepsilon \cdot bc \]

 - Assumes:
 - monochromatic radiation
 - system not saturated in light
 - absorbers behave independently and are distributed homogeneously
 - The product corresponds to the number of absorbers per cm² area as beam passes through cell.
 - \(A = abc \) vs \(A = \varepsilon bc \)

- **Typical analytical application: Calibration curve**

 \[\text{Absorbance} \]

 \[\text{Concentration} \]

 - Also works for mixtures: For a given \(\lambda \),

 \[A_{\text{net}} = A_1 + A_2 + A_3 + \ldots \]

 \[A_{\text{net}} = \varepsilon_1 \cdot bc_1 + \varepsilon_2 \cdot bc_2 + \varepsilon_3 \cdot bc_3 + \ldots \]
Limitations/Deviations Affecting Linearity

A. Real Deviations: due to derivation of BL
 - Law only works at low concentrations (~mM)
 - At higher concentration, η of solution changes, causing ε to change.

B. Instrumental Deviations:
 1. Deviations due to polychromatic radiation
 - due to bandpass of measurement
 - narrow features + wide bandpass \rightarrow changing ε
 - [Link](http://www.chem.uoa.gr/applets/AppletBeerLaw/Appl_Beer2.html)

![Diagram of polychromatic radiation and Beer's law](image)

2. Deviations due to stray light
 - Increased light reaching detector
 - Contributes most when $P << P_0$
 - Causes negative deviation at high concentration (High Abs.)
 - Decreasing bandpass lowers stray light
 - increased linearity

![Diagram of apparent deviation from Beer's law](image)
Limitations/Deviations Affecting Linearity

C. Chemical Deviation: Shifting Equilibria
 - As position of equilibrium changes, concentration of absorber changes
 - Equilibrium affected by:
 - Compensate by using isosbestic point: point where molar absorptivity for components of equilibria are identical.

Optimizing UV-Vis Analysis

- Using UV-Vis for quantitative analysis:
 1. Temperature: changing temp cause shifting equilibria
 2. Solvents: Transparency, Solubility, Purity
 3. Photoeffects: luminescence
 4. Appropriate wavelength:
 choose λ_{max} for best sensitivity and linearity
 5. Appropriate sample cells: minimize scatter, etc.
Example Applications of UV-VIS

• Determination of equilibrium constants

• Determination of reaction kinetics

• Quantitative Analysis - Calibration curves...

• Detectors for separations (HPLC)

Example Applications of UV-VIS

• Photometric Titrations
 – Monitor absorbance of analyte (product, titrant) during titration
 – Beer’s law applies!
 • away from eq. pt., observe linear regions
 • magnitude of absorbance depends on concentration
 • slope of linear portion is determined by Beer’s law
 • Intersection of linear portions = eq. pt.

 – Need to account for effect of dilution on the absorbance

 – Endpoint is determined by data taken away from it
 • points near the endpoint aren’t as critical
 • don’t need sharp transition