MS Goals and Applications

- Several variations on a theme, three common steps
 - Form gas-phase ions
 - choice of ionization method depends on sample identity and information required
 - Separate ions on basis of m/z
 - · "Mass Analyzer"
 - analogous to monochromator, changing conditions of analyzer results in different ions being transmitted
 - Detect ions
 - want (need) high sensitivity
 - "Resolution"

- 2

MS Goals and Applications

- All MS experiments are conducted under vacuum, why?
 - Mean free path (λ):

$$\lambda = \frac{RT}{\sqrt{2}\pi d^2 N_A P} \approx \frac{5\,\text{cm}}{mtorr}$$

- Ion Optics: Electric and magnetic fields induce ion motion
 - Electric fields most common: Apply voltage, ions move
 - Magnetic fields are common in mass analyzers. "Bend" ions paths (Remember the right hand rule?)

MS Figures of Merit: Resolving Power and Resolution

- Relate to ability to distinguish between m/z
 - Defined at a particular m/z
- Resolving Power, Resolution...
 - Variety of definitions
 - ∆m at a given m

Resolving Power =
$$\frac{m}{\Delta m}$$

Resolution =
$$\frac{m}{\Delta m}$$

Figure 9.3 Illustration of the peaks used to calculate

MS Components: Mass Analyzers

- Magnetic Sector Mass Analyzers
 - Accelerate ions by applying voltage (V)
 - velocity depends on mass and charge (m/z)

 $KE = zeV = \frac{1}{2}mv^2$

- Electromagnet introduces a magnetic field (variable)
- The path on an ion through the sector is driven by magnetic force and centripetal force
 - For an ion to pass through, These must be equal

$$F_M = Bzev = \frac{mv^2}{r} = F_c$$
 $\frac{m}{z} = \frac{B^2r^2e}{2V}$

- For a given geometry (r), variation in B or V will allow different ions to pass
- "Scanning" B or V generates a mass spectrum

 In practice, ions leaving the source have a small spread of kinetic energies (bandwidth?)

$$R = \frac{m}{\Delta m} \le 2000 \text{ for mag. sector alone}$$

- · Result is a spread in paths through magnetic field
 - leads to broadened bands and decreased resolution
- Problem is minimized using Double Focusing MS
 - Two sectors:
 - Electrostatic sector focuses on the basis of translation energy: "Energy Analyzer"
 - Magnetic sector focuses on the basis of momentum: "Momentum Analyzer"
 - Results in better M/Z discrimination and higher resolution (up to 100,000!).
 - Often more \$\$

Quadrupole Mass Filter

- Opposing AC voltage applied between pairs of rods
- Udc + V cosωt and -(Udc + V cosωt)
- Because of positive potential superimposed on AC, quad acts as high-pass filter in XZ plane
- Because of negative potential, quad acts as a low-pass filter in YZ plane

MS Components: Mass Analyzers

- By changing AC and DC potentials, different m/z will have "stable" trajectories
 - acts like a "notch" filter!
 - Tunable up to m/z ~4000 with unit mass resolution
- Many benefits over Double Focusing
 - Smaller, Less Expensive
 - More Rugged
 - Possible to "scan" spectra in <0.1 sec
- Can't get the high resolution like double focusing!

- Ion Traps
 - lons are "stored" and selectively cycled out
- Quadropole Ion Trap (QIT)
 - Similar concept to quadropole
 - RF and DC electric fields
 - Only certain m/z are "stable"

- FT-Ion Cyclotron Resonance (FT-ICR)
 - Magnetic field traps ions
 - RF pulse is added to augment motion
 - Current at receiver relates to m/z

MS Components: Mass Analyzers

Time of Flight Mass Analyzer:

Figure 11-8 Principle of a time-of-flight mass spectrometer. A bunch of ions

- "Pulse" of ions are accelerated into analyzer
 - Very small range of kinetic energies (ideally all have same KE)
 - Since masses vary, velocity must also vary
- Ions enter a field-free region, the *drift tube*, where they are separated on the basis of their velocities
 - Lighter ions (smaller m/z) arrive at the detector first, heavier ions (larger m/z) arrive later

0

- Potential for very fast analysis (sub millisecond)
- Simple instrumentation
- Resolution depends on applied voltage (kinetic energy) and flight time
 - use internal standards to calibrate
 - Resolution is enhanced by use of **reflectron**
 - · Like a concave "ion mirror"

12

MS Components: Detectors

- Two common types of detectors:
 - Faraday Cup
 - Electron Multiplier
- Faraday Cup
 - lons are accelerated toward a grounded "collector electrode"
 - As ions strike the surface, electrons flow to neutralize charge, producing a small current that can be externally amplified.
 - Size of this current is related to # of ions in
 - No internal gain → less sensitive

MS Components: Detectors

• Electron Multiplier

- Analogous to PMT
- Durable, applicable to most analyzers
- lons strike surface of dynode
 - Generate electrons
 - >1 e⁻/ion
- Ejected electrons are accelerated to other dynodes
 - >1 e⁻ out/e⁻in
- Current is related to number of ions in times large gain (10⁷or so)

MS Components: Detectors

- · Single channel vs. array detectors
 - "Single" m/z vs "whole spectrum at a time"
 - Often a tradeoff between sensitivity and speed

Microchannel Plate

- Converts ions to electrons
 - Gains approaching electron multipliers
 - ~104 for single, more if "stacked"
- Electrons can be detected in two dimensions.
 - One approach: convert electrons to photons and use optical detection (i.e. camera!)

16

MS Components: Sources

- Ion sources are the component with the greatest number of variations
- Choice of source depends on identity of analyte
 - solid/liquid
 - organic./inorganic
 - reactive/nonreactive
- · Common requirements of sources
 - produce ions!
 - · Ideally small spread in kinetic energies
 - · Produce ions uniformly, without mass discrimination
 - Accelerate ions into analyzer
 - · Series of ion optics

MS Components: Atomic Sources

Inductively Coupled Plasma: Atmospheric pressure discharge

- Relatively high argon flow rate (Liters per minute)
- After ignition, coupling of ionic charge with RF magnetic field "forces" ions to move
 - Heating results, plasma is sustained

8

MS Components: Atomic Sources

• The ICP as an ionization source:

- High temperature in the source results in the formation of ions
 - · best for atomic mass spec.
- Challenges:
 - How do we get from atmospheric pressure in the ICP to vacuum in the MS without filling the MS with argon?
 - How do we keep the high temperature of the ICP from melting/ionizing components of the MS instrument?

18

MS Components: Atomic Sources

- Pressure is reduced by inserting a cooled cone (sampler) into the plasma. This allows only a small fraction of the plasma material to pass.
 - mechanical pump maintains lower pressure of ~1 torr
- A small fraction of this material passes through a second cone (the skimmer) into the high vacuum chamber
 - ion optics accelerate the ions into the mass analyzer
- Typically used with quadrupoles.
 - Unit mass resolution up to ~1000-2000
 - Large LDR
- Isobaric Interference
- Polyatomic ions
- Matrix effects (refractory oxides...)

MS Components: Hard vs Soft Sources

- Parent or Molecular Ion Formation
 - needed to establish molecular weight
- Hard (energetic) sources leads to excited-state ions and fragmentation
 - Good for structural information
- Soft sources cause little fragmentation
 - Good for molecular weight determination

MS Components: Molecular Sources

Igure 20-3 An electron-impact ion source. (From R. M. Silverstein, G. C. Bassler, ad T. C. Morrill, Spectrometric Identification of Organic Compounds, 5th ed., p. 4. New York (**Pley, 1991, Reprinted by permission of John Wiley & Sons, Inc.)

Figure 9.5 Cross-section of an El source. The filament and anode define the electron beam. The ions are formed in the space above the two repellers (the solid coder blocks). A positive charge on the repellers together with a negative potential on the focus electrodes, cause positive ions to be accelerated upward in the diagram, into the mass analyzer. (Modified from Ewing, used with permission.

- Electron Ionization (El or Electron Impact):
 - Sample is vaporized by heating and "leaked" into source
 - Electrons are formed at a hot filament and accelerated across the path of the sample gas
 - As electrons "impact" gas molecules, ionization may occur (electrostatic repulsion). Forms "molecular ion"

$$M + e^- \rightarrow M^{\bullet +} + 2e^-$$

MS Components: Molecular Sources

• El cont'd

- High energy of electrons results in excited state ions
 - · energy may be lost through collisions or reactions
 - · Results in fragmentation of molecular ion to form daughter ions
 - Reactions may be unimolecular (fragmentation, rearrangement) or bimolecular
 - · "Hard" ionization source
 - Fragmentation pattern is characteristic of molecule → Structure Identification

Chemical Ionization (CI):

- Excess of small, gaseous molecule is added to ionization chamber
- Odds of collision of e⁻ produce by filament with the additive >> than with analyte
- Result is production of ionized additive species
- These less-energetic ions serve to ionize analyte

22

MS Components: Molecular Sources

- CI Example: methane
 - Forms CH₄+, CH₃+, CH₂+ by ionization
 - These ions react to form primarily CH₅+, and C₂H₅+
 - · Analyte (MH) is ionized by proton transfer or hydride transfer

$$\begin{split} & \text{CH}_5{}^+ + \text{MH} \rightarrow \text{MH}_2{}^+ + \text{CH}_4 \\ & \text{C}_2\text{H}_5{}^+ + \text{MH} \rightarrow \text{MH}_2{}^+ + \text{C}_2\text{H}_4 \\ & \text{C}_2\text{H}_5{}^+ + \text{MH} \rightarrow \text{M}^+ + \text{C}_2\text{H}_6 \end{split}$$

- Result is a spectrum dominated by (M+1)⁺ or (M-1)⁺ peaks and little fragmentation
- Soft Ionization Source!

• Field Ionization

- Gas flows past "emitter" subject to large electric field
- electron tunneling causes ionization
- Little fragmentation

MS Components: Molecular Sources for Nongaseous Samples

Applicable to large molecules, nonvolatile species

Electrospray Ionization (ESI):

- Atmospheric pressure method
- Sample is pumped through a needle that is held at high voltage compared to cylindrical electrode
- Produces fine spray of charged droplets
- As solvent evaporates, charge density increases → ionization
- Often produces multiply charged ions: good for large molecules!
 - · Making elephants fly!

MS Components: Molecular Sources for Nongaseous Samples

• Matrix-Assisted Laser Desorption/Ionization (MALDI)

- Sample is placed in a matrix containing a good optical absorber (chromophore), solvent is removed
- Sample is irradiated with a pulsed laser. Absorption by matrix aids in sublimation/ionization of analyte (HOW?)

 Essentially no fragmentation! Good for big molecules (biopolymers, etc.)

0 50,000 100,000 200,000 300,000

Figure 9.11 The MALDI mass spectrum of a mouse monoclonal antibody. The matrix used was nicotinic acid; the laser radiation used was 266 nm. (Reprinted from Karas and Bahr, with permission from Elsevier.)

Figure 9.10 The MALDI process, Isolated analyte molecules are desorbed from a bed of matrix molecules by laser irradiation of the matrix. Subsequent desolvation and ionization of the analyte molecule occur by processes that are not completely understood.

MS Components: Molecular Sources for Nongaseous Samples

• Fast Atom Bombardment (FAB):

- Molecule dispersed in a glycerol matrix, bombarded by a beam of atoms from an atom gun (energetic)
- Energy transfer results in production of positive and negative ions, matrix helps to aid ejection

Figure 9.12 Schematic FAB ionization source. The sample, dissolved in solvent, is spread in a thin film on the end of a metal probe and bombarded by fast-moving argon atoms. Both positive and negative ions are produced.

Hyphenated MS Techniques

• GC-MS

- Need to deal with the presence of carrier gas and the pressure difference b/w GC and MS
 - · Capillary GC is usually no problem
 - Packed Column GC can be a problem
 - use "jet separator" to remove carrier gas
- Typically combined with quads, but also ion-trap detectors: fast scans for rapid separations
- Detection modes: Total ion chromatogram, Selected ion chromatogram or Mass spectra
 - Possible 3-D data containing separation and identification!

26

Hyphenated MS Techniques

LC-MS

- HUGE difference b/w LC and MS conditions
- Interface is critical
 - Many variations (thermospray, electrospray), nothing is ideal (yet)
 - Most common are ESI and Atmospheric Pressure Chemical Ionization (APCI)

28

Hyphenated MS Techniques

CE-MS

- CE is probably best suited for coupling to MS
 - · low volume flow rates
- ESI is most common
 - · "End" of the capillary is metalized
 - Allows application of potential for both separation and ionization
 - E(injection)>E(ionization)>ground

Figure 30-7 An instrument for capillary electrophoresis/mass spectrometry. The voltage between the buffer solution on the left and the metalized silica capillary is 30 to 50 kY. The flow of introgen is 3 to 5 kY. The flow of nitrogen is 3 to 5 kY. The flow of nitrogen is 4 to 5 kY. The flow of nitrogen is 7 cm²C for desolvation is 3 to 6 L/min. Green R. D. Smith, J. A. Olivare, N. T. Npoyen, and H. R. Udseth, Anal. Chem., 1988, 60, 437. With permission.)

Hyphenated MS Techniques

• Tandem MS (MS-MS):

- Multiple MS (often quads) coupled together.
 - · Each serves a different purpose
- Soft ionization source produces parent ions that are filtered by the first MS
- Field-free region is filled with inert gas to allow collisions and fragmentation, producing "daughter ions"
- Daughter ions are analyzed
- Since each MS can be scanned, several applications are possible: separations,

30

Strategies for Quantitation (not exclusive to MS)

- Key challenges involve two considerations
 - Instrument limitations
 - Sample limitations
- Ideally, choose the simplest method that provides required level of accuracy and precision
 - Basic calibration curve

Internal Standards

- Deal with precision issues by measuring a relative signal of Int.
 Standard and Analyte
 - Internal Standard and Analyte are different species!

Strategies for Quantitation (not exclusive to MS)

- Standard Additions
 - Often components present in an analyte sample (other than the analyte itself) also contribute to an analytical signal, causing matrix effects.
 - It is difficult to know exactly what is present in a sample matrix, so it
 is difficult to prepare standards.
 - Possible to minimize these effects by employing standard additions
 - · Add a known amount of standard to the sample solution itself.
 - · Perform the analysis.
 - The resulting signal is the sum of the signal for the sample and the standard.
 - By varying the concentration of the standard in the solution, it is possible to extract a value for the response of the unknown itself.

32

Strategies for Quantitation (not exclusive to MS)

· Graphical Approach to Standard Add's:

Hg added (ppm)	Current (μA)
0	4.66
9.36	6.76
18.72	8.83
28.08	10.86
37.44	12.8

 Unknown concentration is derived by extrapolating line to x-intercept.

Strategies for Quantitation (not exclusive to MS)

- Isotope dilution more MS exclusive
 - Artificially change isotope ratios of a sample by spiking with isotope-enriched standard
 - Standard has same identity as analyte, but different, <u>and known</u>, isotopic abundance.
 - Analyte has natural abundance (typically)
 - Measured isotope ratio from MS reflects combination of analyte and spike signal
 - Signal at m/z for isotope A = $f(C_{unk}F_A + C_{spike}F_{A,spike})$
 - Signal at m/z for isotope B = f(C_{unk}F_B + C_{spike}F_{B,spike})
 C = total concentration of all isotopes of element
 F_X = Fractional abundance of isotope X
 - Since we know $\rm F_{\rm X},\, F_{\rm X,spike},$ and $\rm C_{\rm spike},$ a little algebra gets us to $\rm C_{\rm unk}$