Analyzing Two-Dimensional Data

The most common analytical measurements involve the determination of an unknown concentration based on the response of an analytical procedure (usually instrumental).

Such a measurement requires *calibration*, or the preparation of a *calibration* curve.

- Determination of the response of the method to solutions of known concentration (standards).
- Once the response for the standards is known, the concentration of an unknown can be determined IF the concentration/response relationship is well defined.
- Ideally prefer a linear relationship
 - doesn't have to be linear as long as you know what it is, can often "force" nonlinear relationships to appear linear by appropriate experiment design

1

Analyzing Two-Dimensional Data

Important questions to ask:

Concentration

- 1. How do we define the "best" line?
- 2. How do errors in our data affect this line?
- 3. How confident can we be of the unknown concentration that we calculate from our calibration curve?

2

Analyzing Two-Dimensional Data

Example: Protein determination using spectrophotometry.

IMPORTANT: Absorbance ∞ Protein mass

Protein (µg)	0.00	9.36	18.72	28.08	37.44
Absorbance	0.466	0.756	0.843	1.226	1.280

Our objective is to draw the "best fit" line through the data, but how?

Minimize deviation (spread) of the data around the line

Mathematically, this is a "least squares" analysis

- Work to minimize the square of the deviation (to remove effects of sign) from our calculated line.
- Qualitatively this is easy, quantitatively; things are a little more challenging.

3

Method of Least Squares

Typically working to define a straight line, y = mx + b

- Assume that values for x have little error, but more error is associated with values for y.
- Since our data have some scatter, each datum may deviate from the line in the *y-direction*.
 - This is also called a residual (di)

$$d_i = y_i - y_{line} = y_i - (mx_i + b)$$

We really want to *minimize* the *square* of the deviations:

$$(d_i)^2 = (y_i - mx_i - b)^2$$

$$(d_i)^2 = y_i^2 - 2mx_iy_i - 2by_i + 2mx_ib + m^2x_i^2 + b^2$$

We need a little calculus!

4

Method of Least Squares

$$(d_i)^2 = y_i^2 - 2mx_iy_i - 2by_i + 2mx_ib + m^2x_i^2 + b^2$$

With a little hand-waving (and the magic of calculus and linear algebra), we are able to minimize the equation above and solve for m and b, when we do, we get:

$$m = \begin{vmatrix} \sum (x_i y_i) & \sum x_i \\ \sum y_i & n \end{vmatrix} \div D \qquad b = \begin{vmatrix} \sum x_i^2 & \sum (x_i y_i) \\ \sum x_i & \sum y_i \end{vmatrix} \div D \qquad D = \begin{vmatrix} \sum x_i^2 & \sum x_i \\ \sum x_i & n \end{vmatrix}$$

Each operation involves taking the determinant of a matrix

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = (a \cdot d) - (b \cdot c)$$

There is only one solution to the system of equations So only one least squares line!

Method of Least Squares

Lets apply this to our example data:

$$D = \begin{vmatrix} \sum x_i^2 & \sum x_i \\ \sum x_i & n \end{vmatrix} = 4380.48$$

$$m = \begin{vmatrix} \sum (x_i y_i) & \sum x_i \\ \sum y_i & n \end{vmatrix} \div D = 0.022415 \qquad \qquad b = \begin{vmatrix} \sum x_i^2 & \sum (x_i y_i) \\ \sum x_i & \sum y_i \end{vmatrix} \div D = 0.4946$$

Protein (μg) : Absorbance :									
x	у	хy	X ²						
0.00	0.466	0.000	0.000						
9.36	0.756	7.076	87.609						
18.72	0.843	15.780	350.438						
28.08	1.226	34.426	788.486						
37.44	1.280	47.920	1401.75						
Σ 93.60	9.571	105.206	2628.288						

$$b = \begin{vmatrix} \sum x_i^2 & \sum (x_i y_i) \\ \sum x_i & \sum y_i \end{vmatrix} \div D = 0.4946$$

Now lets calculate some points based on our line:

:	Protein (μg)	Absorbance :	:	:	
	X	У	y _{calc}	d	d²
	0.00	0.466	0.495	-0.029	0.000818
	9.36	0.756	0.704	0.052	0.002663
	18.72	0.843	0.914	-0.071	0.005069
	28.08	1.226	1.124	0.102	0.010404
	37.44	1.280	1.334	-0.054	0.002894
Σ	93.60	4.571	4.571	0.000	0.022

How reliable are m, b, and values we determine based on our calibration curve?

The majority of our confidence depends on the scatter of y values about the line, or the standard deviation in y, \boldsymbol{s}_{ν} (also called $\boldsymbol{s}_{r},$ st. dev. about regression).

 $s_{y} = \sqrt{\frac{\sum (d_{i} - \overline{d})^{2}}{n - 2}} = \sqrt{\frac{\sum d_{i}^{2}}{n - 2}}$

- Like usual, the number of degrees of freedom is in the denominator.
- Why n-2 degrees of freedom?

Other std. devs. depend on s_v

$$s_m^2 = \frac{s_y^2 \times r}{D}$$

$$s_m^2 = \frac{s_y^2 \times n}{D} \qquad \qquad s_b^2 = \frac{s_y^2 \sum x_i^2}{D}$$

$$s_{x} = \frac{s_{y}}{\left| m \right|} \sqrt{\frac{1}{k} + \frac{x^{2}n}{D} + \frac{\sum x_{i}^{2}}{D} - \frac{2x\sum x_{i}}{D}} = \frac{s_{y}}{\left| m \right|} \sqrt{\frac{1}{k} + \frac{1}{n} + \frac{\left(y - \overline{y}\right)^{2}}{m^{2}\sum \left(x_{i} - \overline{x}\right)^{2}}}$$

where k is the number of replicate measurements of the unknown and n is the number of calibration points.

Confidence Limits for m, b, x_{calc}

Confidence Limits for m, b, x_{calc}

$$m \pm ts_m$$

$$x_{calc} \pm ts_{x}$$

t is for n-2 degrees of freedom

R² and Such

- Plotting in Excel (or on my calculator) gives me R² (or R) values. What the #\$%@ do these mean?
 - R² (or r²): **Coefficient of Determination** is the fraction of the scatter in the data that can be described by the linear relationship.
 - R² compares the variation of the data from the least-squares line to that due to random scatter:

$$R^2 = 1 - \frac{\sum \left(y_{_i} - y_{_{line}}\right)^2}{\sum \left(y_{_i} - \overline{y}\right)^2}$$

An R² close to 1 doesn't guarantee good precision in m and b

